Efficient Distribution Estimation and Uncertainty Quantification for Elliptic Problems on Domains with Stochastic Boundaries

We study the problem of uncertainty quantification for the numerical solution of elliptic partial differential equation boundary value problems posed on domains with stochastically varying boundaries. We also use the uncertainty quantification results to tackle the efficient solution of such problems. We introduce simple transformations that map a family of domains with stochastic boundaries to a fixed reference domain. We exploit the transformations to carry out a prior and a posteriori error analyses and to derive an efficient Monte Carlo sampling procedure.

[1]  Roger Ghanem,et al.  Probabilistic Electromechanical Modeling of Nanostructures with Random Geometry , 2009 .

[2]  Zi-Cai Li,et al.  Schwarz Alternating Method , 1998 .

[3]  Mark Brady,et al.  Diffusive transport across irregular and fractal walls , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[4]  Fabio Nobile,et al.  Analytic regularity and collocation approximation for elliptic PDEs with random domain deformations , 2013, Comput. Math. Appl..

[5]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[6]  O. Widlund,et al.  Iterative Methods for the Solution of Elliptic Problems on Regions, Partitioned Into Substructures , 2015 .

[7]  Ivo Babuska,et al.  The finite element method for elliptic equations with discontinuous coefficients , 1970, Computing.

[8]  Stig Larsson,et al.  Partial differential equations with numerical methods , 2003, Texts in applied mathematics.

[9]  Daniel M. Tartakovsky,et al.  Stochastic analysis of transport in tubes with rough walls , 2006, J. Comput. Phys..

[10]  J. Pasciak,et al.  An iterative method for elliptic problems on regions partitioned into substructures , 1986 .

[11]  M. Dentz,et al.  Probability density functions for advective–reactive transport in radial flow , 2010 .

[12]  Daniel M. Tartakovsky,et al.  Numerical Methods for Differential Equations in Random Domains , 2006, SIAM J. Sci. Comput..

[13]  Helmut Harbrecht,et al.  On output functionals of boundary value problems on stochastic domains , 2009 .

[14]  Ralf Hiptmair,et al.  Large deformation shape uncertainty quantification in acoustic scattering , 2018, Adv. Comput. Math..

[15]  Helmut Harbrecht,et al.  Analysis of the domain mapping method for elliptic diffusion problems on random domains , 2016, Numerische Mathematik.

[16]  Lloyd N. Trefethen,et al.  Schwarz-Christoffel Mapping , 2002 .

[17]  D. Xiu,et al.  An efficient spectral method for acoustic scattering from rough surfaces , 2007 .

[18]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[19]  L. Trefethen Numerical computation of the Schwarz-Christoffel transformation , 1979 .

[20]  Simon Tavener,et al.  Nonparametric Density Estimation for Randomly Perturbed Elliptic Problems I: Computational Methods, A Posteriori Analysis, and Adaptive Error Control , 2009, SIAM J. Sci. Comput..

[21]  Claudio Canuto,et al.  Numerical solution of partial differential equations in random domains: An application to wind engineering. , 2009 .

[22]  Fabio Nobile,et al.  Worst case scenario analysis for elliptic problems with uncertainty , 2005, Numerische Mathematik.

[23]  Global boundary flattening transforms for acoustic propagation under rough sea surfaces. , 2010, The Journal of the Acoustical Society of America.

[24]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[25]  Donald Estep,et al.  Nonparametric density estimation for randomly perturbed elliptic problems II: Applications and adaptive modeling , 2009 .

[26]  Nicolas Moës,et al.  An extended stochastic finite element method for solving stochastic partial differential equations on random domains , 2008 .

[27]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[28]  Mark G. Blyth,et al.  Heat conduction across irregular and fractal-like surfaces , 2003 .

[29]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..