Visualizing Quaternions Course Notes forSIGGRAPH 2001 Course Organizer

This tutorial focuses on establishing an intuitive visual understanding of the relationship between ordinary 3D rotations and their quaternion representations. We begin building this intuition by showing how quaternion-like properties appear and can be exploited even in 2D space. Quaternions are then introduced in several alternative representations that do not necessarily require abstract mathematical constructs for their visualization. We then proceed to develop visualizations of quaternion applications such as moving frames and orientation splines. Finally, we briefly discuss the problem of generalizing quaternion concepts to higher dimensions using Clifford algebras. Presenter’s Biography Andrew J. Hanson is a professor of computer science at Indiana University, and has regularly taught courses in computer graphics, computer vision, and scientific visualization. He received a BA in chemistry and physics from Harvard College in 1966 and a PhD in theoretical physics from MIT in 1971. Before coming to Indiana University, he did research in theoretical physics at the Institute for Advanced Study, Stanford, and Berkeley, and then in computer vision at the SRI Artificial Intelligence Center in Menlo Park, CA. He has published in IEEE Computer, CG&A, TVCG, ACM Computing Surveys, and has over a dozen papers in the IEEE Visualization Proceedings. He has also contributed three articles to the Graphics Gems series dealing with user interfaces for rotations and with techniques of N-dimensional geometry. Previous experience with conference tutorials includes a Siggraph ’98 tutorial on N-dimensional graphics, a Visualization ’98 course on Clifford Algebras and Quaternions, and a tutorial on Visualizing Quaternions presented at both Siggraph ’99 and Siggraph 2000. Major research interests include scientific visualization, machine vision, computer graphics, perception, and the design of interactive user interfaces for virtual reality and visualization applications. Particular visualization applications currently being studied include an astrophysical treatment of the local galactic neighborhood of the sun, the exploitation of constrained navigation for visualization environments, and applications of graphics in dimensions greater than three to mathematics and theoretical physics.

[1]  Bowen Alpern,et al.  Orientation maps: techniques for visualizing rotations (a consumer's guide) , 1993, VIS '93.

[2]  Andrew J. Hanson,et al.  Interactive visualization methods for four dimensions , 1993, Proceedings Visualization '93.

[3]  G. M.,et al.  A Treatise on the Differential Geometry of Curves and Surfaces , 1910, Nature.

[4]  David C. Banks,et al.  Illumination in diverse codimensions , 1994, SIGGRAPH.

[5]  Edmund Taylor Whittaker,et al.  A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: PRINCIPLES AVAILABLE FOR THE INTEGRATION , 1988 .

[6]  Alfred Gray,et al.  Modern differential geometry of curves and surfaces with Mathematica (2. ed.) , 1998 .

[7]  N. Steenrod Topology of Fibre Bundles , 1951 .

[8]  Sung Yong Shin,et al.  A general construction scheme for unit quaternion curves with simple high order derivatives , 1995, SIGGRAPH.

[9]  Hui Ma Curve and surface framing for scientific visualization and domain dependent navigation , 1996 .

[10]  Thomas Ertl,et al.  Computer Graphics - Principles and Practice, 3rd Edition , 2014 .

[11]  J. Schlag VIII.4 – USING GEOMETRIC CONSTRUCTIONS TO INTERPOLATE ORIENTATION WITH QUATERNIONS , 1991 .

[12]  Bert Jüttler,et al.  Visualization of moving objects using dual quaternion curves , 1994, Comput. Graph..

[13]  G. M.,et al.  Geometry of Four Dimensions , 1915, Nature.

[14]  G. Nielson Smooth Interpolation of Orientations , 1993 .

[15]  Andrew J. Hanson,et al.  Visualizing flow with quaternion frames , 1994, Proceedings Visualization '94.

[16]  J. P. Lectures on Quaternions , 1897, Nature.

[17]  A. Michael Noll A computer technique for displaying n-dimensional hyperobjects , 1967, CACM.

[18]  Pheng-Ann Heng,et al.  Illuminating the fourth dimension , 1992, IEEE Computer Graphics and Applications.

[19]  Ken Shoemake,et al.  Arcball Rotation Control , 1994, Graphics Gems.

[20]  Andrew J. Hanson,et al.  Geometry for N-Dimensional Graphics , 1994, Graphics Gems.

[21]  S. Altmann Rotations, Quaternions, and Double Groups , 1986 .

[22]  M. G. Wagner,et al.  Computer-Aided Design With Spatial Rational B-Spline Motions , 1996 .

[23]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[24]  John F. Hughes,et al.  Modeling surfaces of arbitrary topology using manifolds , 1995, SIGGRAPH.

[25]  Wilhelm Blaschke,et al.  Kinematik und Quaternionen , 1960 .

[26]  H. Coxeter,et al.  Regular Complex Polytopes , 1991 .

[27]  Steven K. Feiner,et al.  Worlds within worlds: metaphors for exploring n-dimensional virtual worlds , 1990, UIST '90.

[28]  Fopke Klok Two moving coordinate frames for sweeping along a 3D trajectory , 1986, Comput. Aided Geom. Des..

[29]  Dana H. Ballard,et al.  Splines as embeddings for generalized cylinders , 1982 .

[30]  J. Milnor Topology from the differentiable viewpoint , 1965 .

[31]  J. Kingdon,et al.  The shape of space , 1995 .

[32]  Ravi Ramamoorthi,et al.  Fast construction of accurate quaternion splines , 1997, SIGGRAPH.

[33]  Andrew J. Hanson,et al.  Interactive methods for visualizable geometry , 1994, Computer.

[34]  James T. Kajiya,et al.  Anisotropic reflection models , 1985, SIGGRAPH.

[35]  Andrew J. Hanson The rolling ball , 1992, Graphics Gems III.

[36]  John F. Hughes,et al.  Smooth interpolation of orientations with angular velocity constraints using quaternions , 1992, SIGGRAPH.

[37]  J. Bloomenthal Calculation of reference frames along a space curve , 1990 .

[38]  Kenneth A. Brakke,et al.  The Surface Evolver , 1992, Exp. Math..

[39]  Pheng-Ann Heng,et al.  Visualizing the fourth dimension using geometry and light , 1991, Proceeding Visualization '91.

[40]  James E. pLebensohn Geometry and the Imagination , 1952 .

[41]  Thomas Banchoff Beyond the Third Dimension: Geometry, Computer Graphics, and Higher Dimensions , 1990 .

[42]  D. Struik Lectures on classical differential geometry , 1951 .

[43]  Ken Shoemake Fiber Bundle Twist Reduction , 1994, Graphics Gems.

[44]  Nelson Max DNA Animation from atom to chromosome , 1985 .

[45]  Christoph M. Hoffmann,et al.  Some techniques for visualizing surfaces in four-dimensional space , 1991, Comput. Aided Des..

[46]  J. Kuipers Quaternions and Rotation Sequences , 1998 .

[47]  Andrew J. Hanson,et al.  Space Walking , 1995, IEEE Visualization.

[48]  J. Wermer,et al.  Linear Algebra Through Geometry , 1984 .

[49]  H. Piaggio An Introduction to the Geometry of N Dimensions , 1930, Nature.

[50]  B. C. Kaplan,et al.  Techniques for visualizing Fermat's last theorem: a case study , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[51]  A. Hanson A Construction for Computer Visualization of Certain Complex Curves , 1994 .

[52]  J. W. Humberston Classical mechanics , 1980, Nature.

[53]  R. Bishop There is More than One Way to Frame a Curve , 1975 .

[54]  Nelson L. Max,et al.  Computer representation of molecular surfaces , 1983, IEEE Computer Graphics and Applications.

[55]  Eric A. Wernert,et al.  Constrained 3D navigation with 2D controllers , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[56]  Andrew J. Hanson,et al.  Virtual reality performance for virtual geometry , 1994, Proceedings Visualization '94.

[57]  A. Hanson Quaternion Gauss Maps and Optimal Framings of Curves and Surfaces , 1999 .

[58]  A. Gray Modern Differential Geometry of Curves and Surfaces , 1993 .

[59]  Andrew J. Hanson,et al.  Rotations for N-Dimensional Graphics , 1995 .

[60]  John C. Hart,et al.  Visualizing quaternion rotation , 1994, TOGS.

[61]  Andrew J. Hanson,et al.  Gravitation, Gauge Theories and Differential Geometry , 1980 .

[62]  A. Hanson,et al.  Meshview : Visualizing the Fourth Dimension , 1999 .

[63]  John C. Platt,et al.  Constraints methods for flexible models , 1988, SIGGRAPH.

[64]  Andrew J. Hanson,et al.  Constrained optimal framings of curves and surfaces using quaternion Gauss maps , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[65]  Abigail Sellen,et al.  A study in interactive 3-D rotation using 2-D control devices , 1988, SIGGRAPH.

[66]  Steven K. Feiner,et al.  Visualizing n-dimensional virtual worlds with n-vision , 1990, I3D '90.

[67]  Carolina Cruz-Neira,et al.  Surround-Screen Projection-Based Virtual Reality: The Design and Implementation of the CAVE , 2023 .

[68]  Andrew J. Hanson,et al.  Quaternion Frame Approach to Streamline Visualization , 1995, IEEE Trans. Vis. Comput. Graph..

[69]  G. Bryan,et al.  The Algebra of Invariants The Dynamical Theory of Gases A Treatise on the Analytical Dynamics of Particles and Rigid Bodies , 1905, Nature.

[70]  A. CLIFFORD MODULES , 1964 .

[71]  David W. Brisson Hypergraphics : visualizing complex relationships in art, science, and technology , 1978 .

[72]  Pheng-Ann Heng,et al.  Four-dimensional views of 3D scalar fields , 1992, Proceedings Visualization '92.

[73]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[74]  F. Sebastian Grassia,et al.  Practical Parameterization of Rotations Using the Exponential Map , 1998, J. Graphics, GPU, & Game Tools.