Chapter 7 – Selection of a simulation method

This chapter describes the fundamental concepts and principles underlying relevant simulation methods. It focuses on the description of individual techniques and examples of particular methods applicable to deposition and aggregation in colloidal dispersions. Widely used computer simulation methods include the Monte Carlo method (MC), molecular dynamics method (MD), and Brownian dynamics method (BD). The MC method is easier to implement, but can only provide information on systems in their equilibrium state. The MD method, on the other hand, is more complex, but capable of simulating nonequilibrium as well as equilibrium systems. Both methods are accurate in the sense that no simplifying assumptions are required to be made in their formulation. In contrast, the BD method is only an approximate realization of, for example, Newton's equation of motion. However, in some cases, it may be the only feasible option.

[1]  H. Mori Transport, Collective Motion, and Brownian Motion , 1965 .

[2]  B. Berne,et al.  Monte Carlo methods for accelerating barrier crossing: Anti-force-bias and variable step algorithms , 1990 .

[3]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .

[4]  M. F. Edwards,et al.  Applications of computer simulations to dense suspension rheology , 1987 .

[5]  R. Zwanzig Ensemble Method in the Theory of Irreversibility , 1960 .

[6]  Hansen,et al.  Soft-sphere model for the glass transition in binary alloys: Pair structure and self-diffusion. , 1987, Physical review. A, General physics.

[7]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[8]  R. Buscall,et al.  Rheology of weakly flocculated suspensions: Experiment and Brownian dynamics simulation , 1991 .

[9]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[10]  B. U. Felderhof,et al.  Diffusion of interacting Brownian particles , 1978 .

[11]  D. Ermak,et al.  Numerical integration of the Langevin equation: Monte Carlo simulation , 1980 .

[12]  Ian K. Snook,et al.  Diffusion in concentrated hard sphere dispersions: Effective two particle mobility tensors , 1983 .

[13]  W. Fickett,et al.  Application of the Monte Carlo Method to the Lattice‐Gas Model. I. Two‐Dimensional Triangular Lattice , 1959 .

[14]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[15]  H. Barnes,et al.  An introduction to rheology , 1989 .

[16]  P. Mazur,et al.  Many-sphere hydrodynamic interactions and mobilities in a suspension , 1982 .

[17]  J. M. Haile,et al.  Molecular dynamics simulations extended to various ensembles. I. Equilibrium properties in the isoenthalpic–isobaric ensemble , 1980 .

[18]  Denis J. Evans,et al.  Non-Newtonian molecular dynamics , 1984 .

[19]  William C. Swope,et al.  The role of long ranged forces in determining the structure and properties of liquid water , 1983 .

[20]  M. Parrinello,et al.  Crystal structure and pair potentials: A molecular-dynamics study , 1980 .

[21]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[22]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[23]  L. Verlet,et al.  Computer "Experiments" on Classical Fluids. IV. Transport Properties and Time-Correlation Functions of the Lennard-Jones Liquid near Its Triple Point , 1973 .

[24]  Eric Dickinson,et al.  Brownian dynamics of colloidal-aggregate rotation and dissociation in shear flow , 1985 .

[25]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[26]  Bruce J. Berne,et al.  On a novel Monte Carlo scheme for simulating water and aqueous solutions , 1978 .

[27]  W. Vangunsteren Constrained dynamics of flexible molecules , 1980 .

[28]  G. Torrie,et al.  Monte Carlo study of a phase‐separating liquid mixture by umbrella sampling , 1977 .

[29]  G. Ciccotti,et al.  “Thought-experiments” by molecular dynamics , 1979 .

[30]  José Alejandre,et al.  Molecular dynamics for discontinuous potentials: I. General method and simulation of hard polyatomic molecules , 1984 .

[31]  D. Ermak A computer simulation of charged particles in solution. I. Technique and equilibrium properties , 1975 .

[32]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[33]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[34]  D. Frenkel,et al.  Simulation of liquids and solids : molecular dynamics and Monte Carlo methods in statistical mechanics , 1987 .

[35]  William G. Hoover,et al.  High-strain-rate plastic flow studied via nonequilibrium molecular dynamics , 1982 .

[36]  Giovanni Ciccotti,et al.  Molecular dynamics simulation of rigid molecules , 1986 .

[37]  Michael H. Peters,et al.  Brownian dynamics simulation of convective transport and adsorption of hydrodynamically interacting particles onto surfaces , 1989 .

[38]  G. Torrie,et al.  Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid , 1974 .

[39]  D. Nicholson,et al.  Monte Carlo grand canonical ensemble calculation in a gas-liquid transition region for 12-6 Argon , 1975 .

[40]  J. D. Doll,et al.  Brownian dynamics as smart Monte Carlo simulation , 1978 .

[41]  C. Broeck,et al.  Stochastic descriptions of the dynamics of interacting brownian particles , 1986 .

[42]  Gary P. Morriss,et al.  Isothermal-isobaric molecular dynamics , 1983 .

[43]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[44]  Mihaly Mezei,et al.  Convergence acceleration in Monte Carlo computer simulation on water and aqueous solutions , 1983 .

[45]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[46]  Stuart G. Whittington,et al.  Monte Carlo in Statistical Mechanics: Choosing between Alternative Transition Matrices , 1977 .

[47]  D. Nicholson,et al.  Computer simulation and the statistical mechanics of adsorption , 1982 .

[48]  M. Mezei Virial-bias Monte Carlo methods Efficient sampling in the (T, P,N) ensemble , 1983 .

[49]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[50]  H. T. Davis,et al.  Molecular dynamical studies of rough-sphere fluids , 1975 .

[51]  C. W. Gear,et al.  Numerical Integration of Ordinary Differential Equations , 2021, Numerical Methods and Optimization.

[52]  William G. Hoover,et al.  Nonequilibrium Molecular Dynamics , 1983 .

[53]  Leslie V. Woodcock,et al.  Recent developments in dense suspension rheology , 1991 .

[54]  W. Russel,et al.  A pairwise additive description of sedimentation and diffusion in concentrated suspensions of hard spheres , 1982 .

[55]  Eric Dickinson,et al.  Motion of flocs of two or three interacting colloidal particles in a hydrodynamic medium , 1983 .

[56]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[57]  M. Rao,et al.  On the force bias Monte Carlo simulation of water: methodology, optimization and comparison with molecular dynamics , 1979 .

[58]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion II , 1945 .

[59]  H. Berendsen,et al.  ALGORITHMS FOR MACROMOLECULAR DYNAMICS AND CONSTRAINT DYNAMICS , 1977 .

[60]  Dwayne A. Chesnut,et al.  Monte carlo calculations for the two-dimensional triangular lattice gas- supercritical region , 1963 .

[61]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[62]  H. J. M. Hanley,et al.  Viscosity of a mixture of soft spheres , 1979 .

[63]  Jean-Paul Ryckaert,et al.  Molecular dynamics of liquid n-butane near its boiling point , 1975 .

[64]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[65]  W. C. Swope,et al.  A computer simulation method for the calculation of equilibrium constants for the formation of physi , 1981 .

[66]  W. W. Wood Monte Carlo Calculations for Hard Disks in the Isothermal‐Isobaric Ensemble , 1968 .

[67]  D. Heyes,et al.  Non-Newtonian behaviour of simple liquids , 1986 .

[68]  David Potter Computational physics , 1973 .

[69]  W. W. Wood NpT‐Ensemble Monte Carlo Calculations for the Hard‐Disk Fluid , 1970 .

[70]  P. Mazur On the theory of brownian motion , 1959 .

[71]  Melvin Lax,et al.  Classical Noise IV: Langevin Methods , 1966 .

[72]  D. Ermak,et al.  Equilibrium electrostatic effects on the behavior of polyions in solution: polyion-mobile ion interaction , 1974 .

[73]  Bruce J. Berne,et al.  Molecular dynamics of the rough sphere fluid. I. Rotational relaxation , 1975 .

[74]  R. Hockney The potential calculation and some applications , 1970 .

[75]  P. Bartlett Studies in physical and theoretical chemistry : Vol. 55, semiconductor electrodes. H.O. Finklea (Editor). Elsevier, Amsterdam, 1988, xxii + 520 pp., Dfl.340.00, US$179.00 , 1988 .

[76]  A. Barker Monte Carlo calculations of the radial distribution functions for a proton-electron plasma , 1965 .

[77]  L. Verlet Computer "Experiments" on Classical Fluids. II. Equilibrium Correlation Functions , 1968 .

[78]  B. Widom,et al.  Some Topics in the Theory of Fluids , 1963 .

[79]  Harold A. Scheraga,et al.  Preferential sampling near solutes in monte carlo calculations on dilute solutions , 1977 .

[80]  Sture Nordholm,et al.  A systematic derivation of exact generalized Brownian motion theory , 1975 .

[81]  L. V. Woodcock Isothermal molecular dynamics calculations for liquid salts , 1971 .