Nanoindentation study of plasticity length scale effects in LIGA Ni microelectromechanical systems structures

This paper presents the results of a nanoindentation study of the effects of strain gradient plasticity on the elastic-plastic deformation of lithographie, galvanoformung, abformung (LIGA) Ni microelectromechanical systems (MEMS) structures plated from sulfamate baths. Both Berkovich and North Star/cube corner indenter tips were used in the study to investigate possible effects of residual indentation depth on the hardness of LIGA Ni MEMS structures between the micro- and nanoscales. A microstructural length scale parameter, $$\widehat l = 2.2$$ , was determined for LIGA nickel films. This is shown to be consistent with a stretch gradient length-scale parameter, l _s, of approximately 0.9 μm.

[1]  M. Troyon,et al.  Fundamental relations used in nanoindentation: Critical examination based on experimental measurements , 2002 .

[2]  Thomas Edward Buchheit,et al.  Microstructural and mechanical properties investigation of electrodeposited and annealed LIGA nickel structures , 2002 .

[3]  Subra Suresh,et al.  Computational modeling of the forward and reverse problems in instrumented sharp indentation , 2001 .

[4]  Jürgen Malzbender,et al.  The P–h ^2 relationship in indentation , 2000 .

[5]  Alexei Bolshakov,et al.  A critical examination of the fundamental relations used in the analysis of nanoindentation data , 1999 .

[6]  Huajian Gao,et al.  Mechanism-based strain gradient plasticity— I. Theory , 1999 .

[7]  John W. Hutchinson,et al.  The mechanics of size-dependent indentation , 1998 .

[8]  Anthony G. Evans,et al.  A microbend test method for measuring the plasticity length scale , 1998 .

[9]  Yang-Tse Cheng,et al.  Effects of 'sinking in' and 'piling up' on estimating the contact area under load in indentation , 1998 .

[10]  Yang-Tse Cheng,et al.  Scaling approach to conical indentation in elastic-plastic solids with work hardening , 1998 .

[11]  J. Vlassak,et al.  Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments , 1998 .

[12]  Alexei Bolshakov,et al.  Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques , 1998 .

[13]  Yang-Tse Cheng,et al.  Further analysis of indentation loading curves: Effects of tip rounding on mechanical property measurements , 1998 .

[14]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[15]  D. Bahr,et al.  Elastic loading and elastoplastic unloading from nanometer level indentations for modulus determinations , 1998 .

[16]  Shefford P. Baker,et al.  Thin films: Stresses and mechanical properties VI , 1997 .

[17]  M. Ashby,et al.  Micro-hardness of annealed and work-hardened copper polycrystals , 1996 .

[18]  D. Clarke,et al.  Size dependent hardness of silver single crystals , 1995 .

[19]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[20]  George M. Pharr,et al.  On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation , 1992 .

[21]  William D. Nix,et al.  A method for interpreting the data from depth-sensing indentation instruments , 1986 .

[22]  I. N. Sneddon The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile , 1965 .

[23]  Thomas Edward Buchheit,et al.  Materials science of microelectromechanical systems (MEMS) devices IV , 2002 .

[24]  Huajian Gao,et al.  Mechanism-based strain gradient plasticity—II. Analysis , 2000 .

[25]  N. Fleck,et al.  Strain gradient plasticity , 1997 .

[26]  Don M. Parkin,et al.  Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures , 1993 .

[27]  R. King,et al.  Elastic analysis of some punch problems for a layered medium , 1987 .

[28]  F. C. Lea Hardness of metals , 1936 .