Finite element modeling for ultrasonic transducers

Finite element modeling is being adopted in the design of ultrasonic transducers and imaging arrays. Impetus is accelerated product design cycles and the need to push the technology. Existing designs are being optimized and new concepts are being explored. This recent acceptance follows the convergence of improvements on many fronts: necessary computer resources are more accessible, lean, specialized algorithms replacing general-purpose approaches, and better material characterization The basics of the finite element method (REM) for the coupled piezoelectric-acoustic problem are reviewed. We contrast different FEM formulations and discuss the implications of each: time-domain versus frequency domain, implicit versus explicit algorithms, linear versus nonlinear. Beyond discussions of the theoretical underpinnings of numerical methods, the paper also examines other modeling ingredients such as discretization, material attenuation, boundary conditions, farfield extrapolation, and electric circuits. Particular emphasis is placed on material characterization, and this is discussed through an actual "modelbuild-test" validation sequence, undertaken recently. Some applications are also discussed. Keywords: Arrays, Attenuation, Finite Element Method, Imaging, Piezoelectric, Transducer, Ultrasound

[1]  D. Mills,et al.  Combining multi-layers and composites to increase SNR for medical ultrasound transducers , 1996, 1996 IEEE Ultrasonics Symposium. Proceedings.

[2]  Jeremy T. Bennett Development of a finite element modelling system for piezocomposite transducers , 1995 .

[3]  R. Lerch,et al.  Simulation of piezoelectric devices by two- and three-dimensional finite elements , 1990, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[4]  J. Hossack,et al.  Finite-element analysis of 1-3 composite transducers , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[5]  Tobin A. Driscoll,et al.  Pseudospectral methods for large-scale bioacoustic models , 1997, 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118).

[6]  G. Wojcik,et al.  Computer modeling of diced matching layers , 1996, 1996 IEEE Ultrasonics Symposium. Proceedings.

[7]  J. Sochacki Absorbing boundary conditions for the elastic wave equations , 1988 .

[8]  H. Allik,et al.  Vibrational response of sonar transducers using piezoelectric finite elements , 1974 .

[9]  V. Murray,et al.  Thermal generation, diffusion and dissipation in 1-3 piezocomposite sonar transducers: finite element analysis and experimental measurements , 1997, 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118).

[10]  D. Borup,et al.  Formulation and validation of Berenger's PML absorbing boundary for the FDTD simulation of acoustic scattering , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[11]  Najib N. Abboud,et al.  Electromechanical modeling using explicit time-domain finite elements , 1993 .

[12]  A. R. Selfridge,et al.  Approximate Material Properties in Isotropic Materials , 1985, IEEE Transactions on Sonics and Ultrasonics.

[13]  L. Brillouin,et al.  Wave Propagation in Periodic Structures , 1946 .

[14]  T. Hughes,et al.  Finite element method for piezoelectric vibration , 1970 .

[15]  G. Kriegsmann,et al.  A comparative study of absorbing boundary conditions , 1988 .

[16]  Zdeněk P. Bažant,et al.  Spurious reflection of elastic waves in nonuniform meshes of constant and linear strain unite elements , 1982 .

[17]  G. Hayward,et al.  A theoretical study on the influence of some constituent material properties on the behavior of 1‐3 connectivity composite transducers , 1995 .

[18]  Peter M. Pinsky,et al.  Finite element dispersion analysis for the three‐dimensional second‐order scalar wave equation , 1992 .

[19]  G. Wojcik,et al.  Time-domain modeling of composite arrays for underwater imaging , 1994, 1994 Proceedings of IEEE Ultrasonics Symposium.

[20]  Roland W. Freund,et al.  Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..

[21]  Luke D. Postema,et al.  The Institute of Electrical and Electronics Engineers , 1963, Nature.

[22]  Najib N. Abboud,et al.  Nonlinear modeling of therapeutic ultrasound , 1995, 1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium.

[23]  Gregory L. Wojcik,et al.  Studies of broadband PMN transducers based on nonlinear models , 1997, 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118).

[24]  G. Hayward,et al.  Assessing the influence of pillar aspect ratio on the behavior of 1-3 connectivity composite transducers , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[25]  Junru Wu,et al.  Determination of velocity and attenuation of shear waves using ultrasonic spectroscopy , 1996 .

[26]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[27]  S. Sherrit,et al.  Composite curved linear array for sonar imaging: construction, testing, and comparison to FEM simulations , 1997, 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118).

[28]  Thomas L. Szabo,et al.  Time domain wave equations for lossy media obeying a frequency power law , 1994 .

[29]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[30]  Gregory L. Wojcik,et al.  Incremental "model-build-test" validation exercise for a 1-D biomedical ultrasonic imaging array , 1997, 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118).

[31]  J. S. Przemieniecki Theory of matrix structural analysis , 1985 .

[32]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[33]  R. Ludwig,et al.  An explicit numerical time domain formulation to simulate pulsed pressure waves in viscous fluids exhibiting arbitrary frequency power law attenuation , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.