Finite element modeling for ultrasonic transducers
暂无分享,去创建一个
Najib N. Abboud | Gregory L. Wojcik | David K. Vaughan | John Mould | David J. Powell | Lisa Nikodym | D. Powell | G. Wojcik | D. Vaughan | J. Mould | L. Nikodym | N. Abboud
[1] D. Mills,et al. Combining multi-layers and composites to increase SNR for medical ultrasound transducers , 1996, 1996 IEEE Ultrasonics Symposium. Proceedings.
[2] Jeremy T. Bennett. Development of a finite element modelling system for piezocomposite transducers , 1995 .
[3] R. Lerch,et al. Simulation of piezoelectric devices by two- and three-dimensional finite elements , 1990, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[4] J. Hossack,et al. Finite-element analysis of 1-3 composite transducers , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[5] Tobin A. Driscoll,et al. Pseudospectral methods for large-scale bioacoustic models , 1997, 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118).
[6] G. Wojcik,et al. Computer modeling of diced matching layers , 1996, 1996 IEEE Ultrasonics Symposium. Proceedings.
[7] J. Sochacki. Absorbing boundary conditions for the elastic wave equations , 1988 .
[8] H. Allik,et al. Vibrational response of sonar transducers using piezoelectric finite elements , 1974 .
[9] V. Murray,et al. Thermal generation, diffusion and dissipation in 1-3 piezocomposite sonar transducers: finite element analysis and experimental measurements , 1997, 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118).
[10] D. Borup,et al. Formulation and validation of Berenger's PML absorbing boundary for the FDTD simulation of acoustic scattering , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[11] Najib N. Abboud,et al. Electromechanical modeling using explicit time-domain finite elements , 1993 .
[12] A. R. Selfridge,et al. Approximate Material Properties in Isotropic Materials , 1985, IEEE Transactions on Sonics and Ultrasonics.
[13] L. Brillouin,et al. Wave Propagation in Periodic Structures , 1946 .
[14] T. Hughes,et al. Finite element method for piezoelectric vibration , 1970 .
[15] G. Kriegsmann,et al. A comparative study of absorbing boundary conditions , 1988 .
[16] Zdeněk P. Bažant,et al. Spurious reflection of elastic waves in nonuniform meshes of constant and linear strain unite elements , 1982 .
[17] G. Hayward,et al. A theoretical study on the influence of some constituent material properties on the behavior of 1‐3 connectivity composite transducers , 1995 .
[18] Peter M. Pinsky,et al. Finite element dispersion analysis for the three‐dimensional second‐order scalar wave equation , 1992 .
[19] G. Wojcik,et al. Time-domain modeling of composite arrays for underwater imaging , 1994, 1994 Proceedings of IEEE Ultrasonics Symposium.
[20] Roland W. Freund,et al. Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..
[21] Luke D. Postema,et al. The Institute of Electrical and Electronics Engineers , 1963, Nature.
[22] Najib N. Abboud,et al. Nonlinear modeling of therapeutic ultrasound , 1995, 1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium.
[23] Gregory L. Wojcik,et al. Studies of broadband PMN transducers based on nonlinear models , 1997, 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118).
[24] G. Hayward,et al. Assessing the influence of pillar aspect ratio on the behavior of 1-3 connectivity composite transducers , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[25] Junru Wu,et al. Determination of velocity and attenuation of shear waves using ultrasonic spectroscopy , 1996 .
[26] B. Auld,et al. Acoustic fields and waves in solids , 1973 .
[27] S. Sherrit,et al. Composite curved linear array for sonar imaging: construction, testing, and comparison to FEM simulations , 1997, 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118).
[28] Thomas L. Szabo,et al. Time domain wave equations for lossy media obeying a frequency power law , 1994 .
[29] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[30] Gregory L. Wojcik,et al. Incremental "model-build-test" validation exercise for a 1-D biomedical ultrasonic imaging array , 1997, 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118).
[31] J. S. Przemieniecki. Theory of matrix structural analysis , 1985 .
[32] R. Courant,et al. Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .
[33] R. Ludwig,et al. An explicit numerical time domain formulation to simulate pulsed pressure waves in viscous fluids exhibiting arbitrary frequency power law attenuation , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.