Quantum theory of multiple-input-multiple-output Markovian feedback with diffusive measurements

Feedback control engineers have been interested in multiple-input-multiple-output (MIMO) extensions of single-input-single-output (SISO) results of various kinds due to its rich mathematical structure and practical applications. An outstanding problem in quantum feedback control is the extension of the SISO theory of Markovian feedback by Wiseman and Milburn [Phys. Rev. Lett. 70, 548 (1993)] to multiple inputs and multiple outputs. Here we generalize the SISO homodyne-mediated feedback theory to allow for multiple inputs, multiple outputs, and arbitrary diffusive quantum measurements. We thus obtain a MIMO framework which resembles the SISO theory and whose additional mathematical structure is highlighted by the extensive use of vector-operator algebra.

[1]  Wiseman,et al.  Quantum theory of continuous feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[2]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[3]  John W. Clark,et al.  Modelling of quantum mechanical control systems , 1980 .

[4]  C. T. Seppala,et al.  A review of performance monitoring and assessment techniques for univariate and multivariate control systems , 1999 .

[5]  A C Doherty,et al.  Optimal unravellings for feedback control in linear quantum systems. , 2005, Physical review letters.

[6]  K. Jacobs,et al.  FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .

[7]  Hideo Mabuchi,et al.  Quantum feedback control and classical control theory , 1999, quant-ph/9912107.

[8]  Todd A. Brun,et al.  A simple model of quantum trajectories , 2002 .

[9]  Milburn,et al.  Quantum theory of optical feedback via homodyne detection. , 1993, Physical review letters.

[10]  G. J. Milburn,et al.  Quantum error correction for continuously detected errors , 2003 .

[11]  Alireza Shabani,et al.  Quantum feedback control: how to use verification theorems and viscosity solutions to find optimal protocols , 2008, 0808.1102.

[12]  Shaocheng Tong,et al.  A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems , 2003, IEEE Trans. Fuzzy Syst..

[13]  H. Carmichael Statistical Methods in Quantum Optics 1 , 1999 .

[14]  T. Tarn,et al.  On the controllability of quantum‐mechanical systems , 1983 .

[15]  D. B. Horoshko,et al.  Direct Detection Feedback for Preserving Quantum Coherence in an Open Cavity , 1997 .

[16]  Qinghua Zhang,et al.  Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems , 2002, IEEE Trans. Autom. Control..

[17]  Stefano Mancini Markovian feedback to control continuous-variable entanglement , 2006 .

[18]  H. M. Wiseman,et al.  Complete parametrizations of diffusive quantum monitorings , 2011, 1102.3073.

[19]  Matthew R. James,et al.  The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.

[20]  Stefano Mancini,et al.  Optimal control of entanglement via quantum feedback , 2007 .

[21]  Tzyh Jong Tarn,et al.  Invertibility of quantum-mechanical control systems , 1984, Mathematical systems theory.

[22]  Vitali,et al.  Effect of feedback on the decoherence of a Schrödinger-cat state: A quantum trajectory description. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[23]  Shaocheng Tong,et al.  Fuzzy adaptive sliding-mode control for MIMO nonlinear systems , 2003, IEEE Trans. Fuzzy Syst..

[24]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[25]  Hidenori Kimura,et al.  Transfer function approach to quantum control-part I: Dynamics of quantum feedback systems , 2003, IEEE Trans. Autom. Control..

[26]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[27]  J. Bechhoefer Feedback for physicists: A tutorial essay on control , 2005 .

[28]  Naresh K. Sinha,et al.  Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[29]  L. Diosi,et al.  Complete parameterization, and invariance, of diffusive quantum trajectories for Markovian open systems , 2001 .

[30]  O. Gasparyan Linear and Nonlinear Multivariable Feedback Control: A Classical Approach , 2008 .

[31]  G. J. Milburn,et al.  Dynamical creation of entanglement by homodyne-mediated feedback (9 pages) , 2004, quant-ph/0409154.

[32]  Milburn,et al.  All-optical versus electro-optical quantum-limited feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[33]  Dennis S. Bernstein,et al.  Feedback control: an invisible thread in the history of technology , 2002 .

[34]  Daniel E. Rivera,et al.  Systematic techniques for determining modelling requirements for SISO and MIMO feedback control , 1995 .

[35]  S. Lee,et al.  State observer for MIMO nonlinear systems , 2003 .

[36]  Hidenori Kimura,et al.  Transfer function approach to quantum Control-Part II: Control concepts and applications , 2003, IEEE Trans. Autom. Control..

[37]  J. J. Hope,et al.  Stabilizing entanglement by quantum-jump-based feedback , 2007 .

[38]  Elbert Hendricks,et al.  Linear Control System Design , 2009 .

[39]  Hideo Mabuchi,et al.  Continuous quantum error correction as classical hybrid control , 2009 .

[40]  Jing Zhang,et al.  Protecting Coherence and Entanglement by Quantum Feedback Controls , 2010, IEEE Transactions on Automatic Control.

[41]  Milburn,et al.  Squeezing via feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[42]  I. Petersen,et al.  Sliding mode control of quantum systems , 2009, 0911.0062.

[43]  Stefano Mancini,et al.  Towards feedback control of entanglement , 2005 .

[44]  M.R. James,et al.  $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.

[45]  Kurt Jacobs,et al.  Rapid measurement of quantum systems using feedback control. , 2007, Physical review letters.

[46]  Oleg N. Gasparyan,et al.  Linear and Nonlinear Multivariable Feedback Control , 2008 .

[47]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[48]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[49]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[50]  Jiang Qian Ying On the Strong Stabilizability of MIMO n-Dimensional Linear Systems , 1999, SIAM J. Control. Optim..

[51]  S. Mancini,et al.  Spin squeezing via quantum feedback , 2001 .

[52]  Mohammed M'Saad,et al.  Observer design for a class of MIMO nonlinear systems , 2004, Autom..

[53]  C. Gardiner,et al.  Squeezing of intracavity and traveling-wave light fields produced in parametric amplification , 1984 .

[54]  Kurt Jacobs,et al.  A straightforward introduction to continuous quantum measurement , 2006, quant-ph/0611067.

[55]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .