Nichtparabolizität des valenzbandes von Bi2Te3 gefolgert aus transporteigenschaften

Messungen der galvanomagnetischen und thermoelektrischen Effekte an p-Bi2Te3 werden im Rahmen eines nichtparabolischen Einvalenzbandomodells mit Vieltalstruktur interpretiert. Fur dieses Modell werden die Ausdrucke fur die galvanomagnetischen Koeffizienten und die Thermokraft angegeben. Fur akustische Gitterstreuung werden die Streufaktoren der Hall- und Magnetowiderstandskoeffizienten theoretisch berechnet. Zur Ermittlung des reduzierten Ferminiveaus und der Breite der verbotenen Zone wird ein grafisches Losungsverfahren angegeben. Der anomale Anstieg des Hallkoeffizienten bei steigender Ladungstragerkonzentration wird durch den Einflus des „nichtparabolischen” Streufaktors erklart. Entsprechend dem Erwartungswert fur akustische Gitterstreuung ergibt sich der Temperaturgang der „isotropen” Beweglichkeit proportional T−3/2 im Gegensatz zu den bisherigen Interpretationen mit parabolischem Band. Measurements of galvanomagnetic and thermoelectric effects of p-Bi2Te3 are interpreted by a non-parabolic one-valence-band model with many-valley structure. For this model the formulas of galvanomagnetic coefficients and thermopower are given. For acoustical mode scattering the scattering-factors of the Hall and magnetoresistivity coefficients are theoretically calculated. For the determination of the reduced Fermi level and the magnitude of energy gap a graphic solution-method is given. The anomalous increase of Hall coefficients at increasing carrier concentration is interpreted by the influence of „non-parabolic” scattering factors. According to the expected value for acoustical mode scattering the dependence of „isotropic” mobility is obtained proportional T−3/2 in contrast to previous interpretations in terms of a parabolic band.

[1]  W. Zawadzki,et al.  Electron transport phenomena in small-gap semiconductors , 1974 .

[2]  I. G. Lang,et al.  Valence-Band Properties of Bi2Te3 from Galvanomagnetic Measurements , 1973 .

[3]  G. Landwehr,et al.  Saturation and quantum oscillations in the magneto-seebeck-effect of p-type Bi2Te3 , 1972 .

[4]  G. R. Miller,et al.  Anistropy of the Constant-Energy Surfaces in n-Type Bi 2 Te 3 and Bi 2 Se 3 from Galvanomagnetic Coefficients , 1970 .

[5]  S. Katsuki The Band Structure of Bismuth Telluride , 1969 .

[6]  G. Harbeke On the Band Structure of Anisotropic Crystals , 1968 .

[7]  S. Zukotynski,et al.  On the Theory of Transport Phenomena with Anisotropic Scattering , 1965, May 1.

[8]  W. Zawadzki,et al.  The Generalized Fermi-Dirac Integrals , 1965 .

[9]  S. Zukotynski,et al.  Galvano- and Thermomagnetic Effects in Semiconductors with Non-Spherical and Non-Parabolic Energy Bands , 1964, 1964.

[10]  W. Zawadzki,et al.  Thermodynamic Properties of Free Carriers in Semiconductors with Arbitrary Energy Bands , 1964, August 1.

[11]  W. Zawadzki,et al.  Transport Properties of Cubic Semiconductors with Nonparabolic Energy Bands , 1964, August 1.

[12]  S. Zukotynski,et al.  On the Theory of Transport Phenomena in Semiconductors Possessing Non-Spherical and Non-Quadratic Energy Bands , 1963 .

[13]  Che-yu Li,et al.  Effect of Pressure on the Energy Gap of Bi2Te3 , 1961 .

[14]  R. Mansfield,et al.  The Electrical Properties of Bismuth Telluride , 1958 .

[15]  R. Wolfe,et al.  Galvanomagnetic Effects in n-Type Bismuth Telluride , 1958 .

[16]  R. Wolfe,et al.  Anisotropic Galvanomagnetic Effects in Semiconductors , 1956 .