Halogen Bonding at the Active Sites of Human Cathepsin L and MEK1 Kinase: Efficient Interactions in Different Environments
暂无分享,去创建一个
Nobuo Shimma | François Diederich | Jörg Benz | Bernd Kuhn | Kenji Morikami | F. Diederich | B. Kuhn | D. Banner | W. Haap | B. Gsell | R. Thoma | J. Benz | J. Diez | M. Stihle | G. Hartmann | K. Morikami | Jean-Marc Plancher | L. Hardegger | B. Spinnler | L. Anselm | Robert Ecabert | Y. Isshiki | N. Shimma | Martine Stihle | Ralf Thoma | Jean-Marc Plancher | Leo A Hardegger | Beat Spinnler | Lilli Anselm | Robert Ecabert | Bernard Gsell | Joachim Diez | Guido Hartmann | David W Banner | Wolfgang Haap | Yoshiaki Isshiki | Jean‐Marc Plancher
[1] M. Chudziński,et al. Anion receptors composed of hydrogen- and halogen-bond donor groups: modulating selectivity with combinations of distinct noncovalent interactions. , 2011, Journal of the American Chemical Society.
[2] Pierangelo Metrangolo,et al. Halogen bonding in halocarbon-protein complexes: a structural survey. , 2011, Chemical Society reviews.
[3] C. Lukacs,et al. Design and synthesis of novel allosteric MEK inhibitor CH4987655 as an orally available anticancer agent. , 2011, Bioorganic & medicinal chemistry letters.
[4] Chao Xu,et al. Structural basis for the recognition and cleavage of histone H3 by cathepsin L , 2011, Nature communications.
[5] D. Banner,et al. Systematische Untersuchung von Halogenbrücken in Protein‐Ligand‐ Wechselwirkungen , 2011 .
[6] A. Vulpetti,et al. Fluorine–Protein Interactions and 19F NMR Isotropic Chemical Shifts: An Empirical Correlation with Implications for Drug Design , 2011, ChemMedChem.
[7] François Diederich,et al. Systematic investigation of halogen bonding in protein-ligand interactions. , 2011, Angewandte Chemie.
[8] Timothy Clark,et al. Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. , 2010, Physical chemistry chemical physics : PCCP.
[9] Mohammed G. Sarwar,et al. Thermodynamics of halogen bonding in solution: substituent, structural, and solvent effects. , 2010, Journal of the American Chemical Society.
[10] Manuel Ellermann,et al. Molekulare Erkennung in der aktiven Tasche der Catechol-O- Methyltransferase: energetisch günstige Verdrängung eines von einem Bisubstratinhibitor importierten Wassermoleküls† , 2009 .
[11] Edilio Borroni,et al. Molecular recognition at the active site of catechol-o-methyltransferase: energetically favorable replacement of a water molecule imported by a bisubstrate inhibitor. , 2009, Angewandte Chemie.
[12] S. Rick,et al. Free energies and entropies of water molecules at the inhibitor-protein interface of DNA gyrase. , 2009, Journal of the American Chemical Society.
[13] Weiliang Zhu,et al. Halogen bonding--a novel interaction for rational drug design? , 2009, Journal of medicinal chemistry.
[14] C. Hunter,et al. Non-covalent interactions between iodo-perfluorocarbons and hydrogen bond acceptors. , 2009, Chemical communications.
[15] Pavel Hobza,et al. Br···O Complexes as Probes of Factors Affecting Halogen Bonding: Interactions of Bromobenzenes and Bromopyrimidines with Acetone. , 2009, Journal of chemical theory and computation.
[16] S. Kazmirski,et al. Beyond the MEK-pocket: can current MEK kinase inhibitors be utilized to synthesize novel type III NCKIs? Does the MEK-pocket exist in kinases other than MEK? , 2009, Bioorganic & medicinal chemistry letters.
[17] P. Metrangolo,et al. Halogen Versus Hydrogen , 2008, Science.
[18] Pierangelo Metrangolo,et al. Halogenbrücken in der supramolekularen Chemie , 2008 .
[19] Pierangelo Metrangolo,et al. Halogen bonding in supramolecular chemistry. , 2008, Angewandte Chemie.
[20] Pavel Hobza,et al. Investigations into the Nature of Halogen Bonding Including Symmetry Adapted Perturbation Theory Analyses. , 2008, Journal of chemical theory and computation.
[21] Daniel F Ortwine,et al. 4-anilino-5-carboxamido-2-pyridone derivatives as noncompetitive inhibitors of mitogen-activated protein kinase kinase. , 2007, Journal of medicinal chemistry.
[22] Kevin E. Riley,et al. Insights into the strength and origin of halogen bonding: the halobenzene-formaldehyde dimer. , 2007, The journal of physical chemistry. A.
[23] Timothy Clark,et al. Halogen bonding: the σ-hole , 2007 .
[24] Peter Politzer,et al. An overview of halogen bonding , 2007, Journal of molecular modeling.
[25] Amir Karton,et al. Co-Crystallization of Sym-Triiodo-Trifluorobenzene with Bipyridyl Donors: Consistent Formation of Two Instead of Anticipated Three N···I Halogen Bonds , 2007 .
[26] Peter Politzer,et al. σ‐Hole bonding and hydrogen bonding: Competitive interactions , 2007 .
[27] J. Lauher,et al. Preparation of Poly(diiododiacetylene), an Ordered Conjugated Polymer of Carbon and Iodine , 2006, Science.
[28] M. Gütschow,et al. Interaction of papain-like cysteine proteases with dipeptide-derived nitriles. , 2005, Journal of medicinal chemistry.
[29] Pierangelo Metrangolo,et al. Halogen bonding based recognition processes: a world parallel to hydrogen bonding. , 2005, Accounts of chemical research.
[30] Kevin Cowtan,et al. research papers Acta Crystallographica Section D Biological , 2005 .
[31] Eric Westhof,et al. Halogen bonds in biological molecules. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[32] M. Berthelot,et al. Halogen-bond geometry: a crystallographic database investigation of dihalogen complexes. , 2003, Acta crystallographica. Section B, Structural science.
[33] J. Rebek,et al. Nitrogen−Halogen Intermolecular Forces in Solution , 1999 .
[34] G. Murshudov,et al. Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.
[35] Frank H. Allen,et al. The Nature and Geometry of Intermolecular Interactions between Halogens and Oxygen or Nitrogen , 1996 .
[36] Gautam R. Desiraju,et al. Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis , 1995 .
[37] Gautam R. Desiraju. Supramolekulare Synthone für das Kristall‐Engineering ‐ eine neue organische Synthese , 1995 .
[38] R. S. Coleman,et al. Reversible covalent inhibition of papain by a peptide nitrile. Carbon-13 NMR evidence for a thioimidate ester adduct , 1986 .
[39] O. Hassel,et al. Structural aspects of interatomic charge-transfer bonding. , 1970, Science.
[40] A. Bondi. van der Waals Volumes and Radii , 1964 .
[41] N. A. Sörensen,et al. The Structure of Bromine 1,4-Dioxanate. , 1954 .