An immunosensor for the detection of pathogens was developed using imaging ellipsometry (IE) as a detection method. Yersinia enterocolitica was selected as the target pathogen in this study. A gold surface deposited with a self-assembled layer of 11-mercaptoundecanoic acid (11-MUA) was used as a substrate. For the fabrication of the immunosensor, protein G spots were made on the substrate using an inkjet-type microarrayer, and monoclonal antibody (Mab) was adsorbed onto the protein G spots. Deposition of each layer onto the substrate was confirmed by the measurement of surface plasmon resonance. The ellipsometric image of the protein G spot and the Mab-adsorbed protein G spot were acquired using an off-null ellipsometry type of imaging ellipsometry system. By measuring the ellipsometric angles of the protein layers, the surface concentration of each protein layer was calculated. The change in the mean optical intensity of the protein spot to the various concentrations of Y.enterocolitica was estimated. The immunosensor using imaging ellipsometry could successfully detect Y. enterocolitica in concentrations varying from 10(3) to 10(7) cfu/mL. The proposed immunosensor system has the advantage of allowing label-free detection, high sensitivity, and operational simplicity.