Superconvergence analysis and error expansion for the Wilson nonconforming finite element

SummaryIn this paper the Wilson nonconforming finite element is considered for solving a class of two-dimensional second-order elliptic boundary value problems. Superconvergence estimates and error expansions are obtained for both uniform and non-uniform rectangular meshes. A new lower bound of the error shows that the usual error estimates are optimal. Finally a discussion on the error behaviour in negative norms shows that there is generally no improvement in the order by going to weaker norms.