The directionality of the ear of the pigeon (Columba livia)

SummaryThe directionality of cochlear microphonic potentials in the azimuthal plane was investigated in the pigeon (Columba livia), using acoustic free-field stimulation (pure tones of 0.25–6 kHz).At high frequencies in the pigeon's hearing range (4–6 kHz), changing azimuth resulted in a maximum change of the cochlear microphonic amplitude by about 20 dB (SPL). The directionality decreased clearly with decreasing frequency.Acoustic blocking of the contralateral ear canal could reduce the directional sensitivity of the ipsilateral ear by maximally 8 dB. This indicates a significant sound transmission through the bird's interaural pathways. However, the magnitude of these effects compared to those obtained by sound diffraction (maximum > 15 dB) suggests that pressure gradients at the tympanic membrane are only of subordinate importance for the generation of directional cues.The comparison of interaural intensity differences with previous behavioral results confirms the hypothesis that interaural intensity difference is the primary directional cue of azimuthal sound localization in the high-frequency range (2–6 kHz).

[1]  J. Schwartzkopff,et al.  The auditory threshold of the pigeon (Columba livia) by heart-rate conditioning , 1984, Naturwissenschaften.

[2]  Lindsay M. Aitkin,et al.  The response properties of auditory neurones in the midbrain of the domestic fowl (Callus gallus) to monaural and binaural stimuli , 1979, Journal of comparative physiology.

[3]  J. Lewald The acuity of sound localization in the pigeon (Columba livia) , 1987, Naturwissenschaften.

[4]  Masakazu Konishi,et al.  Mechanisms of sound localization in the barn owl (Tyto alba) , 1979, Journal of comparative physiology.

[5]  G. Langner,et al.  Infrasound responses in the midbrain of the guinea fowl , 1984, Neuroscience Letters.

[6]  L. Rayleigh,et al.  XII. On our perception of sound direction , 1907 .

[7]  日本音響学会,et al.  Comparative Studies of Hearing in Vertebrates , 1980, Proceedings in Life Sciences.

[8]  W. Keeton,et al.  Detection of atmospheric infrasound by homing pigeons , 1977, Nature.

[9]  J. Lewald,et al.  Interaural time and intensity difference thresholds of the pigeon (Columba livia) , 1987, Naturwissenschaften.

[10]  Michael B. Calford,et al.  Constraints on the coding of sound frequency imposed by the avian interaural canal , 2004, Journal of Comparative Physiology A.

[11]  R. B. Coles,et al.  Directional hearing in the barn owl (Tyto alba) , 1988, Journal of Comparative Physiology A.

[12]  M. Konishi,et al.  Neuronal and behavioral sensitivity to binaural time differences in the owl , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  J. Schwartzkopff On the Hearing of Birds , 1955 .

[14]  R. Klinke,et al.  Inner ear mechanics of the crocodilian and avian basilar papillae in comparison to neuronal data , 1986, Hearing Research.

[15]  Yoshitsune Wada Beiträge zur vergleichenden Physiologie des Gehörorganes , 2005, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[16]  Jerald L. Bauck,et al.  Corrections to L. Schwarz, ‘‘On the theory of diffraction of a plane soundwave around a sphere’’ [‘‘Zur Theorie der Beugung einer ebenen Schallwelle an der Kugel,’’ Akust. Z. 8, 91–117 (1943)] , 1986 .

[17]  H. Autrum Über Lautäusserungen und Schallwahrnehmung bei Arthropoden II , 2004, Zeitschrift für vergleichende Physiologie.

[18]  A. Møller Function of the Middle Ear , 1974 .

[19]  J. Schwartzkopff,et al.  Untersuchungen über die Arbeitsweise des Mittelohres und das Richtungshören der Singvögel unter Verwendung von Cochlea-Potentialen , 2004, Zeitschrift für vergleichende Physiologie.

[20]  John J. Rosowski,et al.  Sound transmission through the avian interaural pathways , 1980, Journal of comparative physiology.

[21]  Douglas B. Quine,et al.  Infrasound detection by the homing pigeon: A behavioral audiogram , 1979, Journal of comparative physiology.

[22]  George Gourevitch,et al.  Directional Hearing in Terrestrial Mammals , 1980 .

[23]  D. Quine,et al.  Frequency shift discrimination: Can homing pigeons locate infrasounds by Doppler shifts? , 1981, Journal of comparative physiology.

[24]  William T. Keeton,et al.  Detection of changes in atmospheric pressure by the homing pigeon,Columba livia , 1974, Journal of comparative physiology.

[25]  E. B. Newman,et al.  The localization of actual sources of sound. , 1936 .

[26]  Andrew Moiseff,et al.  Bi-coordinate sound localization by the barn owl , 2004, Journal of Comparative Physiology A.

[27]  D. B. Lewis,et al.  Directional Hearing in the Japanese Quail (Coturnix Coturnix Japonica): II. Cochlear Physiology , 1980 .

[28]  E I Knudsen,et al.  Monaural occlusion shifts receptive-field locations of auditory midbrain units in the owl. , 1980, Journal of neurophysiology.

[29]  M. Konishi,et al.  The owl's interaural pathway is not involved in sound localization , 1981, Journal of comparative physiology.

[30]  Brian Lewis,et al.  Sound localization in birds , 1980, Trends in Neurosciences.

[31]  Michael B. Calford,et al.  Avian interaural canal enhances interaural delay , 2004, Journal of Comparative Physiology A.

[32]  J. Schwartzkopff,et al.  Beitrag zum Problem des Richtungshörens bei Vögeln , 2004, Zeitschrift für vergleichende Physiologie.

[33]  J. Lewald Neuronal coding of azimuthai sound direction in the auditory midbrain of the pigeon , 2004, Naturwissenschaften.

[34]  C. Bray,et al.  Hearing in the pigeon as studied by the electrical responses of the inner ear. , 1936 .

[35]  William M. Jenkins,et al.  Sound localization in pigeon (Columba livia). , 1979 .

[36]  D. B. Lewis,et al.  Directional Hearing in the Japanese Quail (Coturnix Coturnix Japonica): I. Acoustic Properties of the Auditory System , 1980 .

[37]  J. Delius,et al.  Sensory Mechanisms Related to Homing in Pigeons , 1978 .

[38]  J. Lewald Neural mechanisms of directional hearing in the pigeon , 2004, Experimental Brain Research.

[39]  P. Dallos,et al.  Neural response to very low-frequency sound in the avian cochlear nucleus , 1989, Journal of Comparative Physiology A.

[40]  Andrew Moiseff,et al.  Binaural disparity cues available to the barn owl for sound localization , 1989, Journal of Comparative Physiology A.