A computationally efficient state-space partitioning approach to pricing high-dimensional American options via dimension reduction

This paper studies the problem of pricing high-dimensional American options. We propose a method based on the state-space partitioning algorithm developed by Jin et al. (2007) and a dimension-reduction approach introduced by Li and Wu (2006). By applying the approach in the present paper, the computational efficiency of pricing high-dimensional American options is significantly improved, compared to the extant approaches in the literature, without sacrificing the estimation precision. Various numerical examples are provided to illustrate the accuracy and efficiency of the proposed method. Pseudcode for an implementation of the proposed approach is also included.

[1]  James A. Tilley Valuing American Options in a Path Simulation Model , 2002 .

[2]  P. Glasserman,et al.  Classical solutions to reaction-diffusion systems for hedging problems with interacting Ito and point processes , 2004, math/0505208.

[3]  A.N. Avramidis,et al.  Efficiency improvements for pricing American options with a stochastic mesh , 1999, WSC'99. 1999 Winter Simulation Conference Proceedings. 'Simulation - A Bridge to the Future' (Cat. No.99CH37038).

[4]  M. Fu,et al.  Pricing American Options: A Comparison of Monte Carlo Simulation Approaches ⁄ , 2001 .

[5]  M. Broadie,et al.  American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods , 1996 .

[6]  Martin B. Haugh,et al.  Pricing American Options: A Duality Approach , 2001, Oper. Res..

[7]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[8]  G. Pagès,et al.  Error analysis of the optimal quantization algorithm for obstacle problems , 2003 .

[9]  René M. Stulz,et al.  Options on the minimum or the maximum of two risky assets : Analysis and applications , 1982 .

[10]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[11]  Eduardo S. Schwartz The valuation of warrants: Implementing a new approach , 1977 .

[12]  An efficient approximation method for American exotic options , 2007 .

[13]  L. Rogers Monte Carlo valuation of American options , 2002 .

[14]  Michael C. Fu,et al.  Optimal Exercise Policies and Simulation-Based Valuation for American-Asian Options , 2003, Oper. Res..

[15]  G. Pagès,et al.  First-Order Schemes in the Numerical Quantization Method , 2003 .

[16]  Mark Broadie,et al.  A Primal-Dual Simulation Algorithm for Pricing Multi-Dimensional American Options , 2001 .

[17]  G. Barone-Adesi,et al.  Efficient Analytic Approximation of American Option Values , 1987 .

[18]  Jari Toivanen,et al.  Operator splitting methods for pricing American options under stochastic volatility , 2009, Numerische Mathematik.

[19]  R. Geske,et al.  On Valuing American Call Options with the Black-Scholes European Formula , 1984 .

[20]  H. Johnson An Analytic Approximation for the American Put Price , 1983, Journal of Financial and Quantitative Analysis.

[21]  R. C. Merton,et al.  Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case , 1969 .

[22]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[23]  P. Glasserman,et al.  A Sotchastic Mesh Method for Pricing High-Dimensional American Options , 2004 .

[24]  Vadim Linetsky,et al.  Pricing Multi-Asset American Options: A Finite Element Method-of-Lines with Smooth Penalty , 2007, J. Sci. Comput..

[25]  Mark S. Joshi,et al.  Trinomial or Binomial: Accelerating American Put Option Price on Trees , 2008 .

[26]  M. Broadie,et al.  The Valuation of American Options on Multiple Assets , 1997 .

[27]  Eduardo S. Schwartz,et al.  The Valuation of American Put Options , 1977 .

[28]  A semi-analytic method for valuing high-dimensional options on the maximum and minimum of multiple assets , 2006 .

[29]  P. Glasserman,et al.  Monte Carlo methods for security pricing , 1997 .

[30]  O. Scaillet,et al.  Pricing American Options under Stochastic Volatility and Stochastic Interest Rates , 2009 .

[31]  Xing Jin,et al.  A STATE‐SPACE PARTITIONING METHOD FOR PRICING HIGH‐DIMENSIONAL AMERICAN‐STYLE OPTIONS , 2007 .

[32]  R. C. Merton,et al.  Optimum consumption and portfolio rules in a continuous - time model Journal of Economic Theory 3 , 1971 .

[33]  Alex W. H. Chan Merton, Robert C. , 2010 .

[35]  Paul Hyden,et al.  Efficiency improvements for pricing American options with a stochastic mesh , 1999, WSC'99. 1999 Winter Simulation Conference Proceedings. 'Simulation - A Bridge to the Future' (Cat. No.99CH37038).

[36]  P. Boyle Options: A Monte Carlo approach , 1977 .

[37]  G. Pagès,et al.  A QUANTIZATION TREE METHOD FOR PRICING AND HEDGING MULTIDIMENSIONAL AMERICAN OPTIONS , 2005 .

[38]  Jérôme Barraquand,et al.  Numerical Valuation of High Dimensional Multivariate American Securities , 1995, Journal of Financial and Quantitative Analysis.

[39]  Cornelis W. Oosterlee,et al.  Pricing high-dimensional Bermudan options using the stochastic grid method , 2012, Int. J. Comput. Math..

[40]  Fernando Zapatero,et al.  Monte Carlo Valuation of American Options through Computation of the Optimal Exercise Frontier , 2000, Journal of Financial and Quantitative Analysis.

[41]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .