Ionic Movements Related to GABA Action on Neurosecretory Fibers and Endocrine Cells of the Hypophyseal Neurointermediate Lobe

[1]  L. Vyklický,et al.  Ion-Selective Microelectrodes and Their Use in Excitable Tissues , 2012, Springer US.

[2]  B. Demeneix,et al.  Dual population of GABAA and GABAB receptors in rat pars intermedia demonstrated by release of αMSH caused by barium ions , 1984, British journal of pharmacology.

[3]  P. Feltz,et al.  Coexistence of GABAA and GABAB receptors on Aδ and C primary afferents , 1984 .

[4]  D. Senseman,et al.  Optical recording of action potentials from vertebrate nerve terminals using potentiometric probes provides evidence for sodium and calcium components , 1983, Nature.

[5]  U. Heinemann,et al.  Changes in [Ca2+]o and [K+]o during repetitive electrical stimulation and during pentetrazol induced seizure activity in the sensorimotor cortex of cats , 1983, Pflügers Archiv.

[6]  M. Wassef,et al.  Light- and electron-microscopic immunocytochemistry of glutamic acid decarboxylase (GAD) in the basal hypothalamus: Morphological evidence for neuroendocrine γ -aminobutyrate (GABA) , 1983, Neuroscience.

[7]  D. Krieger,et al.  Serotonin immunoreactive nerve fibers and terminals in the rat pituitary—light-and electron-microscopic studies , 1983, Neuroscience.

[8]  A. Padjen,et al.  Primary afferent depolarization in frog spinal cord is associated with an increase in membrane conductance. , 1983, Canadian journal of physiology and pharmacology.

[9]  W. Douglas,et al.  Secretagogue effect of barium on output of melanocyte‐stimulating hormone from pars intermedia of the mouse pituitary. , 1983, The Journal of physiology.

[10]  C. Nicholson,et al.  Alkaline and acid transients in cerebellar microenvironment. , 1983, Journal of neurophysiology.

[11]  W. Douglas,et al.  GABA acts directly on cells of pituitary pars intermedia to alter hormone output , 1983, Nature.

[12]  C. Bührle,et al.  The ionic mechanism of the excitatory action of glutamate upon the membranes of motoneurones of the frog , 1983, Pflügers Archiv.

[13]  N. Bowery,et al.  Characteristics of GABAB receptor binding sites on rat whole brain synaptic membranes , 1983, British journal of pharmacology.

[14]  J. Loeffler,et al.  Electrophysiological study with K+- and Ca2+-sensitive micropipettes of GABA receptors in the rat neurointermediate lobe in vitro , 1982, Neuroscience Letters.

[15]  W. Douglas,et al.  GABA directly affects electrophysiological properties of pituitary pars intermedia cells , 1982, Nature.

[16]  V. Thornton Stimulation of calcium‐dependent release of labelled protein from pulse‐labelled mouse pituitary intermediate lobe tissue , 1982, The Journal of physiology.

[17]  R. Llinás,et al.  Transmission by presynaptic spike-like depolarization in the squid giant synapse. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Nordmann,et al.  Calcium efflux from the rat neurohypophysis , 1982, The Journal of physiology.

[19]  K. Dunlap TWO TYPES OF γ‐AMINOBUTYRIC ACID RECEPTOR ON EMBRYONIC SENSORY NEURONES , 1981 .

[20]  P. Headley,et al.  SL 75 102 AS A γ‐AMINOBUTYRIC ACID AGONIST: EXPERIMENTS ON DORSAL ROOT GANGLION NEURONES in vitro , 1981, British journal of pharmacology.

[21]  W. Douglas,et al.  Calcium component to action potentials in rat pars intermedia cells. , 1980, The Journal of physiology.

[22]  A. Constanti,et al.  Pharmacological characterization of different types of GABA and glutamate receptors in vertebrates and invertebrates , 1979, Progress in Neurobiology.

[23]  J. Dreifuss,et al.  Action of γ-aminobutyric acid on hypothalamo-neurohypophysial axons , 1979, Brain Research.

[24]  P. Feltz,et al.  GABA-induced rise of extracellular potassium in rat dorsal root ganglia: an electrophysiological study in vivo , 1976, Brain Research.

[25]  W. Douglas,et al.  Stimulus‐secretion coupling: the concept and clues from chromaffin and other cells , 1968, British journal of pharmacology.

[26]  D. R. Curtis,et al.  The depolarization of feline ventral horn group Ia spinal afferent terminations by GABA , 2004, Experimental Brain Research.

[27]  N. Bowery Baclofen: 10 years on , 1982 .

[28]  W. Oertel,et al.  Central GABAergic innervation of neurointermediate pituitary lobe: biochemical and immunocytochemical study in the rat. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M. Gutnick,et al.  Serotonin and GABA-Induced Fluctuations in Extracellular Ion Concentration in the Hippocampal Slice , 1981 .