Adaptive Morley FEM for the von Kármán equations with optimal convergence rates

The adaptive nonconforming Morley finite element method (FEM) approximates a regular solution to the von Karman equations with optimal convergence rates for sufficiently fine triangulations and small bulk parameter in the Dorfler marking. This follows from the general axiomatic framework with the key arguments of stability, reduction, discrete reliability, and quasiorthogonality of an explicit residual-based error estimator. Particular attention is on the nonlinearity and the piecewise Sobolev embeddings required in the resulting trilinear form in the weak formulation of the nonconforming discretisation. The discrete reliability follows with a conforming companion for the discrete Morley functions from the medius analysis. The quasiorthogonality also relies on a novel piecewise $H^1$ a~priori error estimate and a careful analysis of the nonlinearity.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  G. Knightly,et al.  An existence theorem for the von Kármán equations , 1967 .

[3]  Carsten Carstensen,et al.  Nonconforming finite element discretization for semilinear problems with trilinear nonlinearity , 2017, IMA Journal of Numerical Analysis.

[4]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[5]  Susanne C. Brenner,et al.  A C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^0$$\end{document} interior penalty method for a von Kármán plate , 2016, Numerische Mathematik.

[6]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[7]  Susanne C. Brenner,et al.  Convergence of nonconforming multigrid methods without full elliptic regularity , 1999, Math. Comput..

[8]  Michael J. Holst,et al.  Convergence of goal-oriented adaptive finite element methods for semilinear problems , 2012, Comput. Vis. Sci..

[9]  R. Rannacher,et al.  On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .

[10]  F. Brezzi,et al.  Finite element approximations of the von Kármán equations , 1978 .

[11]  Paul C. Fife,et al.  Von Kármán's equations and the buckling of a thin elastic plate, II plate with general edge conditions , 1968 .

[12]  Carsten Carstensen,et al.  Adaptive nonconforming Crouzeix-Raviart FEM for eigenvalue problems , 2014, Math. Comput..

[13]  Carsten Carstensen,et al.  Guaranteed lower eigenvalue bounds for the biharmonic equation , 2014, Numerische Mathematik.

[14]  Susanne C. Brenner,et al.  Finite Element Methods , 2000 .

[15]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[16]  Tetsuhiko Miyoshi,et al.  A mixed finite element method for the solution of the von Kármán equations , 1976 .

[17]  Dietmar Gallistl,et al.  Morley Finite Element Method for the Eigenvalues of the Biharmonic Operator , 2014, 1406.2876.

[18]  Carsten Carstensen,et al.  Discrete Reliability for Crouzeix-Raviart FEMs , 2013, SIAM J. Numer. Anal..

[19]  Dirk Praetorius,et al.  Rate optimal adaptive FEM with inexact solver for nonlinear operators , 2016, 1611.05212.

[20]  Jun Hu,et al.  A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes , 2014, Comput. Math. Appl..

[21]  L. Reinhart,et al.  On the numerical analysis of the Von Karman equations: Mixed finite element approximation and continuation techniques , 1982 .

[22]  Carsten Carstensen,et al.  An Adaptive Finite Element Eigenvalue Solver of Asymptotic Quasi-Optimal Computational Complexity , 2012, SIAM J. Numer. Anal..

[23]  Susanne C. Brenner,et al.  A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates , 2013, J. Comput. Appl. Math..

[24]  Jean-Pierre Raymond,et al.  Error estimates for the numerical approximation of a distributed optimal control problem governed by the von K\'arm\'an equations , 2017, 1709.05661.

[25]  Christian Kreuzer,et al.  Optimality of an adaptive finite element method for the p-Laplacian equation , 2012 .

[26]  Carsten Carstensen,et al.  How to prove the discrete reliability for nonconforming finite element methods. , 2018, 1808.03535.

[27]  Carsten Carstensen,et al.  Axioms of adaptivity , 2013, Comput. Math. Appl..

[28]  Alfio Quarteroni,et al.  Hybrid finite element methods for the von Karman equations , 1979 .

[29]  Neela Nataraj,et al.  A Nonconforming Finite Element Approximation for the von Karman Equations , 2015, 1506.08958.

[30]  Neela Nataraj,et al.  Conforming finite element methods for the von Kármán equations , 2016, Adv. Comput. Math..

[31]  Carsten Carstensen,et al.  Axioms of Adaptivity with Separate Marking for Data Resolution , 2017, SIAM J. Numer. Anal..

[32]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[33]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[34]  Jun Hu,et al.  A new a posteriori error estimate for the Morley element , 2009, Numerische Mathematik.