A deterministic approach to survival statistics

Survival functions of the form p(t) = exp[−(λt)γ], γ > 0 can be generated by deterministic nonlinear, asymptotically stable (chaotic) dynamical systems. These systems thus provide an alternative to stochastic interpretations of failure time data. We use this approach to analyze cancer patient survival statistics. In this manner we are able to obtain fresh insights into the implications of negative and positive clinical trials.

[1]  Clinical Hematology , 1962 .

[2]  J. Peto The Biology of Cancer—A New Approach , 1977, British Journal of Cancer.

[3]  J Gotman,et al.  Timing of Seizure Recurrence in Adult Epileptic Patients: A Statistical Analysis , 1987, Epilepsia.

[4]  James A. Yorke,et al.  Expanding maps on sets which are almost invariant. Decay and chaos , 1979 .

[5]  R. Rapp,et al.  The survival of patients with inoperable lung cancer: a large-scale randomized study of radiation therapy versus placebo. , 1968, Radiology.

[6]  M. Bernhard Introduction to Chaotic Dynamical Systems , 1992 .

[7]  G. Pianigiani Conditionally invariant measures and exponential decay , 1981 .

[8]  On invariant measures for piecewise $C^2$-transformations of the n-dimensional cube , 1983 .

[9]  L S Liebovitch,et al.  Fractal model of ion-channel kinetics. , 1987, Biochimica et biophysica acta.

[10]  M C Mackey,et al.  The extinction of slowly evolving dynamical systems , 1980, Journal of mathematical biology.

[11]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[12]  Elisa T. Lee,et al.  Statistical Methods for Survival Data Analysis , 1994, IEEE Transactions on Reliability.

[13]  James A. Yorke,et al.  The law of exponential decay for expanding mappings , 1981 .

[14]  M. Mackey,et al.  Probabilistic properties of deterministic systems , 1985, Acta Applicandae Mathematicae.

[15]  B. Lord,et al.  Growth Kinetics of Tumours , 1978, British Journal of Cancer.

[16]  James A. Yorke,et al.  Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model , 1979 .

[17]  M. Shlesinger,et al.  Fractal Time and 1/f Noise in Complex Systems , 1987 .

[18]  M. Retsky,et al.  A stochastic numerical model of breast cancer growth that simulates clinical data. , 1984, Cancer research.