Calculus on Graphs
暂无分享,去创建一个
[1] Brian H. Marcus,et al. State splitting for variable-length graphs , 1986, IEEE Trans. Inf. Theory.
[2] I. Chavel. Riemannian Geometry: Subject Index , 2006 .
[3] F. Chung,et al. Eigenvalues and diameters for manifolds and graphs , 1997 .
[4] Shiu-yuen Cheng,et al. Heat kernel estimates and lower bound of eigenvalues , 1981 .
[5] Sobolev Inequalities on Graphs and on Manifolds , 1992 .
[6] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[7] Thierry Coulhon. Espaces de Lipschitz et inégalités de Poincaré , 1996 .
[8] F. Chung. Laplacians of graphs and Cheeger inequalities , 1993 .
[9] Fan Chung Graham,et al. An Upper Bound on the Diameter of a Graph from Eigenvalues Associated with its Laplacian , 1994, SIAM J. Discret. Math..
[10] I. Chavel,et al. Modified isoperimetric constants, and large time heat diffusion in Riemannian manifolds , 1991 .
[11] A. Friedman. Partial Differential Equations of Parabolic Type , 1983 .
[12] Shing-Tung Yau,et al. Eigenvalues of Graphs and Sobolev Inequalities , 1995, Combinatorics, Probability and Computing.
[13] F. Morgan. Geometric Measure Theory: A Beginner's Guide , 1988 .
[14] O. Rothaus. Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities , 1981 .
[15] Noga Alon,et al. Eigenvalues and expanders , 1986, Comb..
[16] B. M. Fulk. MATH , 1992 .
[17] B. Mohar. Isoperimetric inequalities, growth, and the spectrum of graphs , 1988 .
[18] F. Chung,et al. Upper Bounds for Eigenvalues of the Discrete and Continuous Laplace Operators , 1996 .
[19] J. Nash. Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .
[20] J. Dodziuk,et al. Spectral and function theory for combi-natorial laplacians , 1987 .
[21] S. Bobkov,et al. Poincaré’s inequalities and Talagrand’s concentration phenomenon for the exponential distribution , 1997 .
[22] J. Friedman,et al. Wave equations for graphs and the edge-based Laplacian , 2004 .
[23] T. O’Neil. Geometric Measure Theory , 2002 .
[24] Neil S. Trudinger,et al. On Imbeddings into Orlicz Spaces and Some Applications , 1967 .
[25] A. Grigor’yan,et al. On-diagonal lower bounds for heat kernels and Markov chains , 1997 .
[26] Thierry Coulhon,et al. Ultracontractivity and Nash Type Inequalities , 1996 .
[27] E. Davies,et al. One-parameter semigroups , 1980 .
[28] L. S. Bosanquet,et al. Series de Fourier et classes quasi-analytiques de Fonctions , 1936 .
[29] C. Houdré,et al. , Vertex Isoperimetry and Concentration , 2000 .
[30] Christian Houdré,et al. Some Connections Between Isoperimetric and Sobolev-Type Inequalities , 1997 .
[31] P. Diaconis,et al. Nash inequalities for finite Markov chains , 1996 .
[32] N. Varopoulos. Isoperimetric inequalities and Markov chains , 1985 .
[33] T. S. P. S.,et al. GROWTH , 1924, Nature.
[34] Bojan Mohar,et al. Isoperimetric numbers of graphs , 1989, J. Comb. Theory, Ser. B.
[35] Audra E. Kosh,et al. Linear Algebra and its Applications , 1992 .
[36] J. Friedman. Some geometric aspects of graphs and their eigenfunctions , 1993 .
[37] V. Müller. On the spectrum of an infinite graph , 1987 .
[38] L. Saloff-Coste,et al. Lectures on finite Markov chains , 1997 .
[39] Joel Friedman,et al. Laplacian Eigenvalues and Distances Between Subsets of a Manifold , 2000 .
[40] M. Ledoux,et al. Sobolev inequalities in disguise , 1995 .
[41] E. Davies,et al. Heat kernels and spectral theory , 1989 .