Calculus on Graphs

The purpose of this paper is to develop a "calculus" on graphs that allows graph theory to have new connections to analysis. For example, our framework gives rise to many new partial differential equations on graphs, most notably a new (Laplacian based) wave equation; this wave equation gives rise to a partial improvement on the Chung-Faber-Manteuffel diameter/eigenvalue bound in graph theory, and the Chung-Grigoryan-Yau and (in a certain case) Bobkov-Ledoux distance/eigenvalue bounds in analysis. Our framework also allows most techniques for the non-linear p-Laplacian in analysis to be easily carried over to graph theory.

[1]  Brian H. Marcus,et al.  State splitting for variable-length graphs , 1986, IEEE Trans. Inf. Theory.

[2]  I. Chavel Riemannian Geometry: Subject Index , 2006 .

[3]  F. Chung,et al.  Eigenvalues and diameters for manifolds and graphs , 1997 .

[4]  Shiu-yuen Cheng,et al.  Heat kernel estimates and lower bound of eigenvalues , 1981 .

[5]  Sobolev Inequalities on Graphs and on Manifolds , 1992 .

[6]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[7]  Thierry Coulhon Espaces de Lipschitz et inégalités de Poincaré , 1996 .

[8]  F. Chung Laplacians of graphs and Cheeger inequalities , 1993 .

[9]  Fan Chung Graham,et al.  An Upper Bound on the Diameter of a Graph from Eigenvalues Associated with its Laplacian , 1994, SIAM J. Discret. Math..

[10]  I. Chavel,et al.  Modified isoperimetric constants, and large time heat diffusion in Riemannian manifolds , 1991 .

[11]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[12]  Shing-Tung Yau,et al.  Eigenvalues of Graphs and Sobolev Inequalities , 1995, Combinatorics, Probability and Computing.

[13]  F. Morgan Geometric Measure Theory: A Beginner's Guide , 1988 .

[14]  O. Rothaus Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities , 1981 .

[15]  Noga Alon,et al.  Eigenvalues and expanders , 1986, Comb..

[16]  B. M. Fulk MATH , 1992 .

[17]  B. Mohar Isoperimetric inequalities, growth, and the spectrum of graphs , 1988 .

[18]  F. Chung,et al.  Upper Bounds for Eigenvalues of the Discrete and Continuous Laplace Operators , 1996 .

[19]  J. Nash Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .

[20]  J. Dodziuk,et al.  Spectral and function theory for combi-natorial laplacians , 1987 .

[21]  S. Bobkov,et al.  Poincaré’s inequalities and Talagrand’s concentration phenomenon for the exponential distribution , 1997 .

[22]  J. Friedman,et al.  Wave equations for graphs and the edge-based Laplacian , 2004 .

[23]  T. O’Neil Geometric Measure Theory , 2002 .

[24]  Neil S. Trudinger,et al.  On Imbeddings into Orlicz Spaces and Some Applications , 1967 .

[25]  A. Grigor’yan,et al.  On-diagonal lower bounds for heat kernels and Markov chains , 1997 .

[26]  Thierry Coulhon,et al.  Ultracontractivity and Nash Type Inequalities , 1996 .

[27]  E. Davies,et al.  One-parameter semigroups , 1980 .

[28]  L. S. Bosanquet,et al.  Series de Fourier et classes quasi-analytiques de Fonctions , 1936 .

[29]  C. Houdré,et al.  , Vertex Isoperimetry and Concentration , 2000 .

[30]  Christian Houdré,et al.  Some Connections Between Isoperimetric and Sobolev-Type Inequalities , 1997 .

[31]  P. Diaconis,et al.  Nash inequalities for finite Markov chains , 1996 .

[32]  N. Varopoulos Isoperimetric inequalities and Markov chains , 1985 .

[33]  T. S. P. S.,et al.  GROWTH , 1924, Nature.

[34]  Bojan Mohar,et al.  Isoperimetric numbers of graphs , 1989, J. Comb. Theory, Ser. B.

[35]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[36]  J. Friedman Some geometric aspects of graphs and their eigenfunctions , 1993 .

[37]  V. Müller On the spectrum of an infinite graph , 1987 .

[38]  L. Saloff-Coste,et al.  Lectures on finite Markov chains , 1997 .

[39]  Joel Friedman,et al.  Laplacian Eigenvalues and Distances Between Subsets of a Manifold , 2000 .

[40]  M. Ledoux,et al.  Sobolev inequalities in disguise , 1995 .

[41]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .