Sound velocity measurements of tantalum under shock compression in the 10-110 GPa range

The high-pressure melting curve of tantalum (Ta) has been the center of a long-standing controversy. Sound velocities along the Hugoniot curve are expected to help in understanding this issue. To that end, we employed a direct-reverse impact technique and velocity interferometry to determine sound velocities of Ta under shock compression in the 10-110 GPa pressure range. The measured longitudinal sound velocities show an obvious kink at ∼60 GPa as a function of shock pressure, while the bulk sound velocities show no discontinuity. Such observation could result from a structural transformation associated with a negligible volume change or an electronic topological transition.

[1]  D. Farber,et al.  Shear softening in tantalum at megabar pressures , 2010 .

[2]  L. Hsiung Shock-induced phase transformation in tantalum , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  R. Boehler,et al.  Microscopic evidence of a flat melting curve of tantalum , 2010 .

[4]  M. Mezouar,et al.  High melting points of tantalum in a laser-heated diamond anvil cell. , 2010, Physical review letters.

[5]  J. Moriarty,et al.  High-pressure--high-temperature polymorphism in ta: resolving an ongoing experimental controversy. , 2010, Physical review letters.

[6]  Jianbo Hu,et al.  Hugoniot temperatures and melting of tantalum under shock compression determined by optical pyrometry , 2009 .

[7]  M. Mezouar,et al.  X-ray diffraction measurements of Mo melting to 119 GPa and the high pressure phase diagram. , 2009, The Journal of chemical physics.

[8]  D. Errandonea Transition metals: Can metals be a liquid glass? , 2009, Nature materials.

[9]  Christine J Wu,et al.  Shear-induced anisotropic plastic flow from body-centred-cubic tantalum before melting. , 2009, Nature materials.

[10]  Jiabo Li,et al.  Shock-induced bct-bcc transition and melting of tin identified by sound velocity measurements , 2008 .

[11]  D. Alfé,et al.  Comment on "Molybdenum at high pressure and temperature: melting from another solid phase". , 2008, Physical review letters.

[12]  Yanming Ma,et al.  Elasticity of the superconducting metals V, Nb, Ta, Mo, and W at high pressure , 2008 .

[13]  B. Johansson,et al.  Molybdenum at high pressure and temperature: melting from another solid phase. , 2008, Physical review letters.

[14]  M. Gillan,et al.  Melting curve of tantalum from first principles , 2007 .

[15]  J. Moriarty,et al.  First-principles thermoelasticity of transition metals at high pressure: Tantalum prototype in the quasiharmonic limit , 2006 .

[16]  A. Sikorski,et al.  Dynamics of polymer chains in confined space. A computer simulation study , 2005 .

[17]  A. Dewaele,et al.  Mechanical properties of tantalum under high pressure , 2005 .

[18]  Reinhard Boehler,et al.  Melting of aluminum, molybdenum, and the light actinides , 2004 .

[19]  N. Holmes,et al.  Melting of iron at the physical conditions of the Earth's core , 2004, Nature.

[20]  H. Mao,et al.  Melting of tantalum at high pressure determined by angle dispersive x-ray diffraction in a double-sided laser-heated diamond-anvil cell , 2003, cond-mat/0310279.

[21]  R. Cohen,et al.  High-pressure thermoelasticity of body-centered-cubic tantalum , 2001, cond-mat/0111227.

[22]  R. Ditz,et al.  Systematics of transition-metal melting , 2001 .

[23]  D. Lassila,et al.  Shock-induced deformation twinning and omega transformation in tantalum and tantalum–tungsten alloys , 2000 .

[24]  H. Cynn,et al.  Equation of state of tantalum to 174 GPa , 1999 .

[25]  T. Ahrens,et al.  Dynamic compression of an Fe–Cr–Ni alloy to 80 GPa , 1997 .

[26]  U. S. Lindholm,et al.  Shock Wave and High-Strain-Rate Phenomena in Materials , 1992 .

[27]  G. R. Gathers,et al.  The equation of state of platinum to 660 GPa (6. 6 Mbar) , 1989 .

[28]  Moriarty,et al.  Acoustic velocities and phase transitions in molybdenum under strong shock compression. , 1989, Physical review letters.

[29]  J. Brown,et al.  RAREFACTION VELOCITIES IN SHOCKED TANTALUM AND THE HIGH PRESSURE MELTING POINT , 1984 .

[30]  J. Asay,et al.  Determination of the Shear Strength of Shock Compressed 6061-T6 Aluminum , 1981 .

[31]  S. Marsh Lasl Shock Hugoniot Data , 1980 .

[32]  D. Steinberg,et al.  A constitutive model for metals applicable at high-strain rate , 1980 .

[33]  J. N. Fritz,et al.  CHAPTER VII – THE EQUATION OF STATE OF SOLIDS FROM SHOCK WAVE STUDIES , 1970 .

[34]  A. J. Cable,et al.  High-velocity impact phenomena , 1970 .