Effect of shock on the magnetic properties of pyrrhotite, the Martian crust, and meteorites

We performed planar shock recovery experiments on natural pyrrhotite at pressures up to 6.9 GPa. We find that high‐field isothermal remanent magnetization in pyrrhotite is demagnetized up to 90% by shock due to preferential removal of low coercivity components of magnetization. Contrary to static experiments, we do not observe complete demagnetization. Post shock permanent changes in magnetic properties include increasing saturation isothermal remanent magnetization, bulk coercivity and low‐temperature memory, and changes in squareness of hysteresis. These changes are consistent with an increase in the volume fraction of single domain grains. The lack of magnetic anomalies over large Martian impact basins is not expected to be solely due to shock demagnetization of the crust. We find that pyrrhotite‐bearing rocks and meteorites can retain records of Martian magnetic fields even if shocked to pressures approaching 7 GPa. However, some paleointensity techniques may underestimate this field.

[1]  E. A. Lima,et al.  Paleointensity of the Martian field from SQUID Microscopy , 2005 .

[2]  J. Arkani‐Hamed On the possibility of single‐domain/pseudo‐single‐domain magnetic particles existing in the lower crust of Mars: Source of the strong magnetic anomalies , 2005 .

[3]  M. Boustie,et al.  Magnetic Effects of Explosive Driven Shocks on Rocks With Various Magnetic Mineralogy , 2005 .

[4]  Pierre Rochette,et al.  Investigating impact demagnetization through laser impacts and SQUID microscopy , 2005 .

[5]  V. Sautter,et al.  Sulfide mineralogy and redox conditions in some shergottites , 2005 .

[6]  M. Funaki,et al.  Matching Martian crustal magnetization and magnetic properties of Martian meteorites , 2005 .

[7]  J. Arkani‐Hamed Magnetic crust of Mars , 2005 .

[8]  Pierre Rochette,et al.  Toward a robust normalized magnetic paleointensity method applied to meteorites , 2004 .

[9]  S. Gilder,et al.  Magnetic properties of single and multi‐domain magnetite under pressures from 0 to 6 GPa , 2004 .

[10]  J. Arkani‐Hamed,et al.  Impact demagnetization of the martian crust , 2004 .

[11]  L. Hood,et al.  High pressure magnetic transition in pyrrhotite and impact demagnetization on Mars , 2003 .

[12]  E. Scott,et al.  Paleomagnetic record of Martian meteorite ALH84001 , 2003 .

[13]  E. Pierazzo,et al.  Distribution of crustal magnetic fields on Mars: Shock effects of basin‐forming impacts , 2003 .

[14]  V. Sautter,et al.  Pyrrhotite and the remanent magnetization of SNC meteorites: a changing perspective on Martian magnetism , 2001 .

[15]  Joseph L. Kirschvink,et al.  Records of an ancient Martian magnetic field in ALH84001 , 2001 .

[16]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[17]  Y. Yamaguchi,et al.  The effect of pressure on the electronic states of FeS and studied by Mössbauer spectroscopy , 1997 .

[18]  Hisao Kobayashi,et al.  The effect of pressure on the electronic states of FeS and studied by Mössbauer spectroscopy , 1997 .

[19]  M. Jackson,et al.  Changes in magnetic remanence during simulated deep sedimentary burial , 1993 .

[20]  Subir K. Banerjee,et al.  Experimental deformation of synthetic magnetite‐bearing calcite sandstones: Effects on remanence, bulk magnetic properties, and magnetic anisotropy , 1993 .

[21]  J. M. McGlaun,et al.  CTH: A three-dimensional shock wave physics code , 1990 .

[22]  J. Mattei,et al.  Grain‐size dependence of the magnetic behavior of pyrrhotite during its low‐temperature transition at 34 K , 1989 .

[23]  M. Dekkers Magnetic properties of natural pyrrhotite Part I: Behaviour of initial susceptibility and saturation-magnetization-related rock-magnetic parameters in a grain-size dependent framework , 1988 .

[24]  Graham,et al.  Morin transition of shock-modified hematite. , 1986, Physical review. B, Condensed matter.

[25]  S. Cisowski,et al.  Lunar paleointensities via the IRMs normalization method and the early magnetic history of the moon. [saturation remanence] , 1986 .

[26]  M. E. Kipp,et al.  WONDY V: a one-dimensional finite-difference wave-propagation code , 1982 .

[27]  J. Graham,et al.  New observations on natural pyrrhotites; magnetic transition in hexagonal pyrrhotite , 1981 .

[28]  S. Cisowski,et al.  Interacting vs. non-interacting single domain behavior in natural and synthetic samples , 1981 .

[29]  eNo J. GneuePt New observations on natural pyrrhotites: magnetic transition in hexagonal pyrrhotite , 1981 .

[30]  T. Ahrens Equations of State of Iron Sulfide and Constraints on the Sulfur Content of the Earth , 1979 .

[31]  J. Tossell,et al.  Magnetic Transitions Observed in Sulfide Minerals at Elevated Pressures and Their Geophysical Significance , 1973, Science.

[32]  T. Nagata Introductory notes on shock remanent magnetization and shock demagnetization of igneous rocks , 1971 .

[33]  T. Nagata Basic magnetic properties of rocks under the effects of mechanical stresses , 1970 .