High Contrast Imaging of the Close Environment of HD 142527

Context. It has long been suggested that circumstellar disks surrounding young stars may be the signposts of planets, and even more so since the recent discoveries of embedded substellar companions. According to models, the planet-disk interaction may create large structures, gaps, rings, or spirals in the disk. In that sense, the Herbig star HD 142527 is particularly compelling, as its massive disk displays intriguing asymmetries that suggest the existence of a dynamical peturber of unknown nature. Aims. Our goal was to obtain deep thermal images of the close circumstellar environment of HD 142527 to re-image the reported close-in structures (cavity, spiral arms) of the disk and to search for stellar and substellar companions that could be connected to their presence. Methods. We obtained high-contrast images with the NaCo adaptive optics system at the Very Large Telescope in L′-band. We applied different analysis strategies using both classical PSF-subtraction and angular differential imaging to probe for any extended structures or point-like sources. Results. The circumstellar environment of HD 142527 is revealed at an unprecedented spatial resolution down to the subarcsecond level for the first time at 3.8 μm. Our images reveal important radial and azimuthal asymmetries that invalidate an elliptical shape for the disk. It instead suggests a bright inhomogeneous spiral arm plus various fainter spiral arms. We also confirm an inner cavity down to 30 AU and two important dips at position angles of 0 and 135 deg. The detection performance in angular differential imaging enables exploration of the planetary mass regime for projected physical separations as close as 40 AU. Use of our detection map together with Monte Carlo simulations sets stringent constraints on the presence of planetary mass, brown dwarf or stellar companions as a function of the semi-major axis. They severely limit any presence of massive giant planets with semi-major axis beyond 50 AU, i.e. probably within the large disk’s cavity which extends radially up to 145 AU or even farther outside.

[1]  B. Ercolano,et al.  THE DYNAMICALLY DISRUPTED GAP IN HD 142527 , 2012, 1207.2056.

[2]  Catherine Espaillat,et al.  RESOLVED IMAGES OF LARGE CAVITIES IN PROTOPLANETARY TRANSITION DISKS , 2011, 1103.0284.

[3]  Eric B. Ford,et al.  THE FORMATION MECHANISM OF GAS GIANTS ON WIDE ORBITS , 2009, 0909.2662.

[4]  Etienne Artigau,et al.  A New Algorithm for Point-Spread Function Subtraction in High-Contrast Imaging: A Demonstration with Angular Differential Imaging , 2007, astro-ph/0702697.

[5]  Y. Alibert,et al.  Extrasolar planet population synthesis - IV. Correlations with disk metallicity, mass, and lifetime , 2012, 1201.1036.

[6]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[7]  M. Bate Predicting the properties of binary stellar systems: the evolution of accreting protobinary systems , 2000, astro-ph/0002143.

[8]  S. Lubow,et al.  Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes , 1994 .

[9]  Miki Ishii,et al.  DETECTION OF WATER ICE GRAINS ON THE SURFACE OF THE CIRCUMSTELLAR DISK AROUND HD 142527 , 2009 .

[10]  Anne-Marie Lagrange,et al.  NAOS-CONICA first on sky results in a variety of observing modes , 2003, SPIE Astronomical Telescopes + Instrumentation.

[11]  A. G. W. Cameron,et al.  Physics of the primitive solar accretion disk , 1978 .

[12]  B. Macintosh,et al.  Images of a fourth planet orbiting HR 8799 , 2010, Nature.

[13]  Mark Clampin,et al.  Optical Images of an Exosolar Planet 25 Light-Years from Earth , 2008, Science.

[14]  C. A. Grady,et al.  DISCOVERY OF SMALL-SCALE SPIRAL STRUCTURES IN THE DISK OF SAO 206462 (HD 135344B): IMPLICATIONS FOR THE PHYSICAL STATE OF THE DISK FROM SPIRAL DENSITY WAVE THEORY , 2012, 1202.6139.

[15]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[16]  Beth Biller,et al.  A LIKELY CLOSE-IN LOW-MASS STELLAR COMPANION TO THE TRANSITIONAL DISK STAR HD 142527 , 2012, 1206.2654.

[17]  N. Ohashi Observational signature of planet formation: The ALMA view , 2008 .

[18]  A. Crida,et al.  LONG RANGE OUTWARD MIGRATION OF GIANT PLANETS, WITH APPLICATION TO FOMALHAUT b , 2009, 0910.1004.

[19]  D. Mouillet,et al.  A companion to AB Pic at the planet/brown dwarf boundary , 2005, astro-ph/0504658.

[20]  Saeko S. Hayashi,et al.  Near-Infrared Images of Protoplanetary Disk Surrounding HD 142527 , 2006 .

[21]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[22]  D. Mawet,et al.  Impact of angular differential imaging on circumstellar disk images , 2012, 1207.5909.

[23]  S. Desidera,et al.  MESS (multi-purpose exoplanet simulation system) - A Monte Carlo tool for the statistical analysis and prediction of exoplanet search results , 2011, 1110.4917.

[24]  Francesco Palla,et al.  Star Formation in the Orion Nebula Cluster , 1999 .

[25]  H. C. Stempels,et al.  Modelling circumbinary gas flows in close T Tauri binaries , 2011, 1101.3334.

[26]  P. Kalas,et al.  FOMALHAUT'S DEBRIS DISK AND PLANET: CONSTRAINING THE MASS OF FOMALHAUT B FROM DISK MORPHOLOGY , 2008, 0811.1985.

[27]  Bram AckeMario E. van den Ancker ISO spectroscopy of disks around Herbig Ae/Be stars , , 2004, astro-ph/0406050.

[28]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[29]  Nancy Houk,et al.  Michigan catalogue of two-dimensional spectral types for the HD stars , 1975 .

[30]  Nuno C. Santos,et al.  Extrasolar Planets: Statistical properties of exoplanets , 2007 .

[31]  Aaron C. Boley,et al.  THE TWO MODES OF GAS GIANT PLANET FORMATION , 2009, 0902.3999.

[32]  A. Boccaletti,et al.  A Giant Planet Imaged in the Disk of the Young Star β Pictoris , 2010, Science.

[33]  Markus Janson,et al.  A novel L-band imaging search for giant planets in the Tucana and β Pictoris moving groups , 2007, 0706.0095.

[34]  P. Thebault,et al.  Outer edges of debris discs - How sharp is sharp? , 2008, 0801.3724.

[35]  David Lafreniere,et al.  Direct Imaging and Spectroscopy of a Planetary-Mass Candidate Companion to a Young Solar Analog , 2008, 0809.1424.

[36]  J. Bouwman,et al.  The complex circumstellar environment of HD 142527 , 2011, 1101.5719.

[37]  Saeko S. Hayashi,et al.  Spiral Structure in the Circumstellar Disk around AB Aurigae , 2004 .

[38]  A.-M. Lagrange,et al.  Constraints on planets around β Pic with Harps radial velocity data , 2012, 1202.2579.

[39]  Dimitri Mawet,et al.  IMAGING THE DEBRIS DISK OF HD 32297 WITH A PHASE-MASK CORONAGRAPH AT HIGH STREHL RATIO , 2009 .

[40]  David Mouillet,et al.  NAOS, the first AO system of the VLT: on-sky performance , 2003, SPIE Astronomical Telescopes + Instrumentation.

[41]  Shigeyuki Sako,et al.  The Asymmetric Thermal Emission of the Protoplanetary Disk Surrounding HD 142527 Seen by Subaru/COMICS , 2006 .

[42]  K. Rice,et al.  Protostars and Planets V , 2005 .

[43]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[44]  Julien H. Girard,et al.  High angular resolution detection of β Pictoris b at 2.18 μm , 2011 .

[45]  A. Boccaletti,et al.  An insight in the surroundings of HR 4796 , 2012, 1207.1987.

[46]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[47]  C. Dominik,et al.  Understanding the spectra of isolated Herbig stars in the frame of a passive disk model , 2002, astro-ph/0212032.

[48]  G. Chauvin,et al.  A companion candidate in the gap of the T Chamaeleontis transitional disk , 2011, 1102.4982.

[49]  M. Min,et al.  The building blocks of planets within the ‘terrestrial’ region of protoplanetary disks , 2004, Nature.

[50]  D. Ehrenreich,et al.  High-resolution imaging of young M-type stars of the solar neighbourhood: probing for companions down to the mass of Jupiter , 2011, 1112.3008.