Analysis of Particle Methods for Simultaneous Robot Localization and Mapping and a New Algorithm: Marginal-SLAM

This paper presents a new particle method, with stochastic parameter estimation, to solve the SLAM problem. The underlying algorithm is rooted on a solid probabilistic foundation and is guaranteed to converge asymptotically, unlike many existing popular approaches. Moreover, it is efficient in storage and computation. The new algorithm carries out filtering only in the marginal filtering space, thereby allowing for the recursive computation of low variance estimates of the map. The paper provides mathematical arguments and empirical evidence to substantiate the fact that the new method represents an improvement over the existing particle filtering approaches for SLAM, which work on the joint path state space.

[1]  Peter Cheeseman,et al.  A stochastic map for uncertain spatial relationships , 1988 .

[2]  Sebastian Thrun,et al.  Exploration and model building in mobile robot domains , 1993, IEEE International Conference on Neural Networks.

[3]  Simon J. Godsill,et al.  On sequential simulation-based methods for Bayesian filtering , 1998 .

[4]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[5]  A. Doucet,et al.  Sequential MCMC for Bayesian model selection , 1999, Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics. SPW-HOS '99.

[6]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[7]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[8]  Wolfram Burgard,et al.  Particle Filters for Mobile Robot Localization , 2001, Sequential Monte Carlo Methods in Practice.

[9]  Jeffrey K. Uhlmann,et al.  A counter example to the theory of simultaneous localization and map building , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[10]  Sebastian Thrun,et al.  A Probabilistic On-Line Mapping Algorithm for Teams of Mobile Robots , 2001, Int. J. Robotics Res..

[11]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[12]  Frank Wolter,et al.  Exploring Artificial Intelligence in the New Millenium , 2002 .

[13]  Mark A. Paskin,et al.  Thin Junction Tree Filters for Simultaneous Localization and Mapping , 2002, IJCAI.

[14]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[15]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[16]  Sebastian Thrun,et al.  FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges , 2003, IJCAI 2003.

[17]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[18]  Udo Frese Treemap: An O(log n) Algorithm for Simultaneous Localization and Mapping , 2004, Spatial Cognition.

[19]  J. A. Castellanos,et al.  Limits to the consistency of EKF-based SLAM , 2004 .

[20]  José A. Castellanos,et al.  Unscented SLAM for large-scale outdoor environments , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Nando de Freitas,et al.  Toward Practical N2 Monte Carlo: the Marginal Particle Filter , 2005, UAI.

[22]  Arnaud Doucet,et al.  Particle methods for optimal filter derivative: application to parameter estimation , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[23]  Wolfram Burgard,et al.  Recovering Particle Diversity in a Rao-Blackwellized Particle Filter for SLAM After Actively Closing Loops , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[24]  A. Doucet,et al.  Exponential forgetting and geometric ergodicity for optimal filtering in general state-space models , 2005 .

[25]  Sumeetpal S. Singh,et al.  Novel particle filter methods for recursive and batch maximum likelihood parameter estimation in general states space models , 2005 .

[26]  Hugh Durrant-Whyte,et al.  Simultaneous Localisation and Mapping ( SLAM ) : Part I The Essential Algorithms , 2006 .

[27]  James J. Little,et al.  /spl sigma/SLAM: stereo vision SLAM using the Rao-Blackwellised particle filter and a novel mixture proposal distribution , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[28]  Eduardo Mario Nebot,et al.  Consistency of the FastSLAM algorithm , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[29]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[30]  Eduardo Mario Nebot,et al.  Consistency of the EKF-SLAM Algorithm , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  José A. Castellanos,et al.  Robocentric map joining: Improving the consistency of EKF-SLAM , 2007, Robotics Auton. Syst..