Optimising repeater schemes for the quantum internet

The rate at which quantum communication tasks can be performed using direct transmission is fundamentally hindered by the channel loss. Quantum repeaters allow, in principle, to overcome these limitations, but their introduction necessarily adds an additional layer of complexity to the distribution of entanglement. This additional complexity - along with the stochastic nature of processes such as entanglement generation, Bell swaps, and entanglement distillation - makes finding good quantum repeater schemes non-trivial. We develop an algorithm that can efficiently perform a heuristic optimisation over a subset of quantum repeater schemes for general repeater platforms. We find a strong improvement in the generation rate in comparison to an optimisation over a simpler class of repeater schemes based on BDCZ repeater schemes. We use the algorithm to study three different experimental quantum repeater implementations on their ability to distribute entanglement, which we dub \emph{information processing} implementations, \emph{multiplexed} implementations, and combinations of the two. We perform this heuristic optimisation of repeater schemes for each of these implementations for a wide range of parameters and different experimental settings. This allows us to make estimates on what are the most critical parameters to improve for entanglement generation, how many repeaters to use, and which implementations perform best in their ability to generate entanglement.

[1]  David Elkouss,et al.  Efficient Computation of the Waiting Time and Fidelity in Quantum Repeater Chains , 2019, IEEE Journal on Selected Areas in Communications.

[2]  P. Stroganov,et al.  An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond , 2019, Physical Review B.

[3]  M. Lukin,et al.  Quantum Network Nodes Based on Diamond Qubits with an Efficient Nanophotonic Interface. , 2019, Physical review letters.

[4]  Hideo Kosaka,et al.  Quantum teleportation-based state transfer of photon polarization into a carbon spin in diamond , 2019, Communications Physics.

[5]  Jonathan Katz Cryptography , 2019, Wiley Encyclopedia of Computer Science and Engineering.

[6]  Siddhartha Santra,et al.  Quantum repeater architecture with hierarchically optimized memory buffer times , 2018, Quantum Science and Technology.

[7]  P. Kok,et al.  Statistical analysis of quantum-entangled-network generation , 2018, Physical Review A.

[8]  Robert Keil,et al.  Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna , 2018, Nature Communications.

[9]  F. Grosshans,et al.  Investigating the optimality of ancilla-assisted linear optical Bell measurements , 2018, 1806.01243.

[10]  J. F. Dynes,et al.  Overcoming the rate–distance limit of quantum key distribution without quantum repeaters , 2018, Nature.

[11]  R. Trotta,et al.  Semiconductor quantum dots as an ideal source of polarization-entangled photon pairs on-demand: a review , 2018, Journal of Optics.

[12]  Le Phuc Thinh,et al.  Optimizing practical entanglement distillation , 2018, Physical Review A.

[13]  Bastian Hacker,et al.  Photon-Mediated Quantum Gate between Two Neutral Atoms in an Optical Cavity , 2018, 1801.05980.

[14]  Q. Quraishi,et al.  Neutral-Atom Wavelength-Compatible 780 nm Single Photons from a Trapped Ion via Quantum Frequency Conversion , 2018, Physical Review Applied.

[15]  N. Kalb,et al.  One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment , 2018, Nature Communications.

[16]  Peter C. Humphreys,et al.  Deterministic delivery of remote entanglement on a quantum network , 2017, Nature.

[17]  F. Schmidt,et al.  Waiting time in quantum repeaters with probabilistic entanglement swapping , 2017, Physical Review A.

[18]  Christoph Becher,et al.  High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion , 2017, Nature Communications.

[19]  Leandros Tassiulas,et al.  Routing entanglement in the quantum internet , 2017, npj Quantum Information.

[20]  S. Wehner,et al.  Fully device-independent conference key agreement , 2017, 1708.00798.

[21]  Kenneth Goodenough,et al.  Parameter regimes for a single sequential quantum repeater , 2017, 1705.00043.

[22]  P. C. Humphreys,et al.  Entanglement distillation between solid-state quantum network nodes , 2017, Science.

[23]  I. V. Inlek,et al.  Multispecies Trapped-Ion Node for Quantum Networking. , 2017, Physical review letters.

[24]  S. Wehner,et al.  Loophole-free Bell test using electron spins in diamond: second experiment and additional analysis , 2016, Scientific Reports.

[25]  Norbert Kalb,et al.  Robust quantum-network memory using decoherence-protected subspaces of nuclear spins , 2016, 1603.01602.

[26]  Mario Berta,et al.  Converse Bounds for Private Communication Over Quantum Channels , 2016, IEEE Transactions on Information Theory.

[27]  S. Pirandola,et al.  General Benchmarks for Quantum Repeaters , 2015, 1512.04945.

[28]  A. Reiserer,et al.  Towards quantum networks of single spins: analysis of a quantum memory with an optical interface in diamond. , 2015, Faraday discussions.

[29]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[30]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[31]  T. Ralph,et al.  Nearly deterministic Bell measurement with multiphoton entanglement for efficient quantum-information processing , 2015, 1510.03142.

[32]  S. Wehner,et al.  Shortcuts to quantum network routing , 2015, ArXiv.

[33]  M. A. Rol,et al.  Repeated quantum error correction on a continuously encoded qubit by real-time feedback , 2015, Nature Communications.

[34]  Christoph Simon,et al.  Practical quantum repeaters with parametric down-conversion sources , 2015, 1505.03470.

[35]  Norbert Kalb,et al.  Heralded Storage of a Photonic Quantum Bit in a Single Atom. , 2015, Physical review letters.

[36]  Seung-Woo Lee,et al.  Nearly deterministic bell measurement for multiphoton qubits and its application to quantum information processing. , 2015, Physical review letters.

[37]  Simon J. Devitt,et al.  Photonic Quantum Networks formed from NV− centers , 2014, Scientific Reports.

[38]  Peter van Loock,et al.  3/4-Efficient Bell measurement with passive linear optics and unentangled ancillae. , 2014, Physical review letters.

[39]  Saikat Guha,et al.  The Squashed Entanglement of a Quantum Channel , 2013, IEEE Transactions on Information Theory.

[40]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[41]  R. Hanson,et al.  Diamond NV centers for quantum computing and quantum networks , 2013 .

[42]  N. Gisin,et al.  Single-photon-level optical storage in a solid-state spin-wave memory , 2013, 1301.6924.

[43]  Peter van Loock,et al.  Beating the one-half limit of ancilla-free linear optics Bell measurements. , 2013, Physical review letters.

[44]  Seung-Woo Lee,et al.  Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits , 2011, 1112.0825.

[45]  W. Grice Arbitrarily complete Bell-state measurement using only linear optical elements , 2011 .

[46]  R. Ben-Av,et al.  Optimized multiparty quantum clock synchronization , 2011, 1105.0186.

[47]  R. Simon,et al.  Operator-sum representation for bosonic Gaussian channels , 2010, 1012.4266.

[48]  F. Bussières,et al.  Broadband waveguide quantum memory for entangled photons , 2010, Nature.

[49]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[50]  N. Gisin,et al.  Multimode quantum memory based on atomic frequency combs , 2008, 0805.4164.

[51]  Liang Jiang,et al.  Optimal approach to quantum communication using dynamic programming , 2007, Proceedings of the National Academy of Sciences.

[52]  Simon C Benjamin,et al.  Measurement-based entanglement under conditions of extreme photon loss. , 2007, Physical review letters.

[53]  K. Nemoto,et al.  System Design for a Long-Line Quantum Repeater , 2007, IEEE/ACM Transactions on Networking.

[54]  H. Briegel,et al.  Entanglement purification and quantum error correction , 2007, 0705.4165.

[55]  Shun Watanabe,et al.  Key rate of quantum key distribution with hashed two-way classical communication , 2007, 2007 IEEE International Symposium on Information Theory.

[56]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[57]  H. Kimble,et al.  Measurement-induced entanglement for excitation stored in remote atomic ensembles , 2005, Nature.

[58]  Hoi-Kwong Lo,et al.  Conference key agreement and quantum sharing of classical secrets with noisy GHZ states , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[59]  D. Matsukevich,et al.  Entanglement of a photon and a collective atomic excitation. , 2005, Physical review letters.

[60]  Jeffrey H. Shapiro,et al.  Long-distance quantum communication with neutral atoms , 2005, SPIE International Symposium on Fluctuations and Noise.

[61]  M. Lukin,et al.  Fault-tolerant quantum repeaters with minimal physical resources, and implementations based on single photon emitters , 2005, quant-ph/0502112.

[62]  M. Lukin,et al.  Fault-tolerant quantum communication based on solid-state photon emitters. , 2004, Physical review letters.

[63]  P. Kok,et al.  Efficient high-fidelity quantum computation using matter qubits and linear optics , 2004, quant-ph/0408040.

[64]  Shengjun Wu,et al.  What is quantum entanglement , 2003 .

[65]  B. Moor,et al.  Local permutations of products of Bell states and entanglement distillation , 2002, quant-ph/0207154.

[66]  L. Vandersypen,et al.  QUANTUM COMPUTING WITH ELECTRON SPINS IN QUANTUM DOTS , 2002, quant-ph/0207059.

[67]  C. Crépeau,et al.  Secure multi-party quantum computation , 2002, STOC '02.

[68]  S. Lloyd,et al.  Quantum-enhanced positioning and clock synchronization , 2001, Nature.

[69]  Colin P. Williams,et al.  Quantum clock synchronization based on shared prior entanglement , 2000, Physical review letters.

[70]  G. Burkard,et al.  Spintronics and quantum dots for quantum computing and quantum communication , 2000, cond-mat/0004182.

[71]  P. Kok,et al.  Postselected versus nonpostselected quantum teleportation using parametric down-conversion , 1999, quant-ph/9903074.

[72]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[73]  J. Cirac,et al.  Creation of entangled states of distant atoms by interference , 1998, quant-ph/9810013.

[74]  N. Lutkenhaus,et al.  Bell measurements for teleportation , 1998, quant-ph/9809063.

[75]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[76]  N. Yoran,et al.  Methods for Reliable Teleportation , 1998, quant-ph/9808040.

[77]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[78]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[79]  D. Dieks Communication by EPR devices , 1982 .

[80]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.