Using Linear Logic to Reason about Sequent Systems

Linear logic can be used as a meta-logic for the specification of some sequent calculus proof systems. We explore in this paper properties of such linear logic specifications. We show that derivability of one proof system from another has a simple decision procedure that is implemented simply via bounded logic programming search. We also provide conditions to ensure that an encoded proof system has the cut-elimination property and show that this can be decided again by simple, bounded proof search algorithms.

[1]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[2]  Gerhard Gentzen,et al.  Investigations into Logical Deduction , 1970 .

[3]  Dale Miller,et al.  Forum: A Multiple-Conclusion Specification Logic , 1996, Theor. Comput. Sci..

[4]  Arnon Avron,et al.  Canonical Propositional Gentzen-Type Systems , 2001, IJCAR.

[5]  Christian Retoré,et al.  Pomset Logic: A Non-commutative Extension of Classical Linear Logic , 1997, TLCA.

[6]  Giorgio Delzanno,et al.  Objects in Forum , 1995, ILPS.

[7]  JEAN-MARC ANDREOLI,et al.  Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..

[8]  Roy Dyckhoff,et al.  Contraction-free sequent calculi for intuitionistic logic , 1992, Journal of Symbolic Logic.

[9]  Dale A. Miller,et al.  AN OVERVIEW OF PROLOG , 1988 .

[10]  Natarajan Shankar,et al.  Linearizing intuitionistic implication , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[11]  Gopalan Nadathur,et al.  An Overview of Lambda-PROLOG , 1988, ICLP/SLP.

[12]  Paul Ruet,et al.  Non-Commutative Logic I: The Multiplicative Fragment , 1999, Ann. Pure Appl. Log..

[13]  Dale Miller,et al.  Abstract Syntax for Variable Binders: An Overview , 2000, Computational Logic.

[14]  Dale Miller The pi-Calculus as a Theory in Linear Logic: Preliminary Results , 1992, ELP.

[15]  Jean-Yves Girard,et al.  On the Unity of Logic , 1993, Ann. Pure Appl. Log..

[16]  Lawrence C. Paulson,et al.  The foundation of a generic theorem prover , 1989, Journal of Automated Reasoning.

[17]  Lutz Straßburger,et al.  Non-commutativity and MELL in the Calculus of Structures , 2001, CSL.

[18]  Elaine Pimentel LINEAR LOGIC AS A FRAMEWORK FOR SPECIFYING SEQUENT CALCULUS , 2002 .

[19]  Dale Miller,et al.  Cut-elimination for a logic with definitions and induction , 2000, Theor. Comput. Sci..

[20]  Zohar Manna,et al.  Proving termination with multiset orderings , 1979, CACM.

[21]  Furio Honsell,et al.  A framework for defining logics , 1993, JACM.

[22]  Jean-Baptiste Joinet,et al.  Advances in Linear Logic: Sequent calculi for second order logic , 1995 .

[23]  Gopalan Nadathur,et al.  Uniform Proofs as a Foundation for Logic Programming , 1991, Ann. Pure Appl. Log..

[24]  Vincent Danos,et al.  LKQ and LKT: sequent calculi for second order logic based upon dual linear decompositions of classical implication , 1995 .

[25]  Amy P. Felty,et al.  Specifying Theorem Provers in a Higher-Order Logic Programming Language , 1988, CADE.

[26]  M. E. Szabo,et al.  The collected papers of Gerhard Gentzen , 1969 .

[27]  Jawahar Chirimar,et al.  Proof theoretic approach to specification languages , 1995 .