Kainate receptors and synaptic transmission

[1]  G. Collingridge,et al.  A Role for Ca2+ Stores in Kainate Receptor-Dependent Synaptic Facilitation and LTP at Mossy Fiber Synapses in the Hippocampus , 2003, Neuron.

[2]  Juan Lerma,et al.  Roles and rules of kainate receptors in synaptic transmission , 2003, Nature Reviews Neuroscience.

[3]  G. Collingridge,et al.  Rapid and Differential Regulation of AMPA and Kainate Receptors at Hippocampal Mossy Fibre Synapses by PICK1 and GRIP , 2003, Neuron.

[4]  S. Heinemann,et al.  Loss of Kainate Receptor-Mediated Heterosynaptic Facilitation of Mossy-Fiber Synapses in KA2−/− Mice , 2003, The Journal of Neuroscience.

[5]  J. Xie,et al.  Bidirectional Modulation of GABA Release by Presynaptic Glutamate Receptor 5 Kainate Receptors in the Basolateral Amygdala , 2003, The Journal of Neuroscience.

[6]  T. Manabe,et al.  Kainate Receptor-Dependent Short-Term Plasticity of Presynaptic Ca2+ Influx at the Hippocampal Mossy Fiber Synapses , 2002, The Journal of Neuroscience.

[7]  C. Jahr,et al.  Kainate Receptors Differentially Regulate Release at Two Parallel Fiber Synapses , 2002, Neuron.

[8]  U. Stäubli,et al.  Presynaptic kainate receptors play different physiological roles in mossy fiber and associational-commissural synapses in CA3 of hippocampus from adult rats , 2002, Neuroscience Letters.

[9]  J. Sandkühler,et al.  Role of kainate receptors in nociception , 2002, Brain Research Reviews.

[10]  G. Kerchner,et al.  Kainate Receptor Subunits Underlying Presynaptic Regulation of Transmitter Release in the Dorsal Horn , 2002, The Journal of Neuroscience.

[11]  I. Módy,et al.  Kindling enhances kainate receptor‐mediated depression of GABAergic inhibition in rat granule cells , 2002, The European journal of neuroscience.

[12]  B. Chizh,et al.  Modulation of spinal nociception by GluR5 kainate receptor ligands in acute and hyperalgesic states and the role of gabaergic mechanisms , 2002, Neuropharmacology.

[13]  M. Frerking,et al.  AMPA Receptors and Kainate Receptors Encode Different Features of Afferent Activity , 2002, The Journal of Neuroscience.

[14]  G. Collingridge,et al.  Antagonists of GLUK5-containing kainate receptors prevent pilocarpine-induced limbic seizures , 2002, Nature Neuroscience.

[15]  E. Normand,et al.  Recruitment of the Kainate Receptor Subunit Glutamate Receptor 6 by Cadherin/Catenin Complexes , 2002, The Journal of Neuroscience.

[16]  Rosa Cossart,et al.  Quantal Release of Glutamate Generates Pure Kainate and Mixed AMPA/Kainate EPSCs in Hippocampal Neurons , 2002, Neuron.

[17]  C.Justin Lee,et al.  Functional Expression of AMPA Receptors on Central Terminals of Rat Dorsal Root Ganglion Neurons and Presynaptic Inhibition of Glutamate Release , 2002, Neuron.

[18]  J. Weiner,et al.  Functional characterization of kainate receptors in the rat nucleus accumbens core region. , 2002, Journal of neurophysiology.

[19]  Y. Ben-Ari,et al.  Paradoxical anti-epileptic effects of a GluR5 agonist of kainate receptors. , 2002, Journal of neurophysiology.

[20]  G. Collingridge,et al.  Characterisation of the effects of ATPA, a GLUK5 receptor selective agonist, on excitatory synaptic transmission in area CA1 of rat hippocampal slices , 2002, Neuropharmacology.

[21]  J. Crabtree,et al.  A Presynaptic Kainate Receptor Is Involved in Regulating the Dynamic Properties of Thalamocortical Synapses during Development , 2002, Neuron.

[22]  Guillaume Casassus,et al.  Functional characterization of kainate receptors in the mouse nucleus accumbens , 2002, Neuropharmacology.

[23]  Howard V. Wheal,et al.  Metabotropic-Mediated Kainate Receptor Regulation of IsAHP and Excitability in Pyramidal Cells , 2002, Neuron.

[24]  J. Lambert,et al.  Correlation of the expression of kainate receptor subtypes to responses evoked in cultured cortical and spinal cord neurones , 2002, Brain Research.

[25]  S. Trione On The Distribution , 2002 .

[26]  G. Collingridge,et al.  Synaptic activation of a presynaptic kainate receptor facilitates AMPA receptor-mediated synaptic transmission at hippocampal mossy fibre synapses. , 2001, Neuropharmacology.

[27]  David Lodge,et al.  A Critical Role of a Facilitatory Presynaptic Kainate Receptor in Mossy Fiber LTP , 2001, Neuron.

[28]  D. Kullmann,et al.  Presynaptic Kainate Receptors in the Hippocampus Slowly Emerging from Obscurity , 2001, Neuron.

[29]  G. Kerchner,et al.  Direct Presynaptic Regulation of GABA/Glycine Release by Kainate Receptors in the Dorsal Horn An Ionotropic Mechanism , 2001, Neuron.

[30]  R. Nicoll,et al.  Presynaptic kainate receptors at hippocampal mossy fiber synapses , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Isaac,et al.  Kinetics and activation of postsynaptic kainate receptors at thalamocortical synapses: role of glutamate clearance. , 2001, Journal of neurophysiology.

[32]  J. Valtschanoff,et al.  Presynaptic kainate receptors in primary afferents to the superficial laminae of the rat spinal cord , 2001, The Journal of comparative neurology.

[33]  D. Kullmann,et al.  Kainate receptor-dependent axonal depolarization and action potential initiation in interneurons , 2001, Nature Neuroscience.

[34]  J. E. Huettner Kainate receptors: knocking out plasticity , 2001, Trends in Neurosciences.

[35]  M. Chao,et al.  Kainate Receptors Expressed by a Subpopulation of Developing Nociceptors Rapidly Switch from High to Low Ca2+Permeability , 2001, The Journal of Neuroscience.

[36]  A. Rodríguez-Moreno,et al.  Molecular physiology of kainate receptors. , 2001, Physiological reviews.

[37]  M. Rogawski,et al.  Kainate receptor-mediated heterosynaptic facilitation in the amygdala , 2001, Nature Neuroscience.

[38]  C. Garner,et al.  Molecular Mechanisms Regulating the Differential Association of Kainate Receptor Subunits with SAP90/PSD-95 and SAP97* , 2001, The Journal of Biological Chemistry.

[39]  M. Nedergaard,et al.  A Kainate Receptor Increases the Efficacy of GABAergic Synapses , 2001, Neuron.

[40]  R. Nicoll,et al.  Kainate Receptors Depress Excitatory Synaptic Transmission at CA3→CA1 Synapses in the Hippocampus via a Direct Presynaptic Action , 2001, The Journal of Neuroscience.

[41]  J. Rossier,et al.  Kainate Receptors Regulate Unitary IPSCs Elicited in Pyramidal Cells by Fast-Spiking Interneurons in the Neocortex , 2001, The Journal of Neuroscience.

[42]  Elizabeth P. Garcia,et al.  Kainate Receptor Activation Induces Mixed Lineage Kinase-mediated Cellular Signaling Cascades via Post-synaptic Density Protein 95* , 2001, The Journal of Biological Chemistry.

[43]  J. E. Huettner,et al.  Functional diversity and developmental changes in rat neuronal kainate receptors , 2001, The Journal of physiology.

[44]  R. Nicoll,et al.  Presynaptic Kainate Receptor Mediation of Frequency Facilitation at Hippocampal Mossy Fiber Synapses , 2001, Science.

[45]  R. Cossart,et al.  Presynaptic Kainate Receptors that Enhance the Release of GABA on CA1 Hippocampal Interneurons , 2001, Neuron.

[46]  A. C. Collins,et al.  The Role of RNA Editing of Kainate Receptors in Synaptic Plasticity and Seizures , 2001, Neuron.

[47]  G. Kerchner,et al.  Presynaptic Kainate Receptors Regulate Spinal Sensory Transmission , 2001, The Journal of Neuroscience.

[48]  S. DeVries,et al.  Bipolar Cells Use Kainate and AMPA Receptors to Filter Visual Information into Separate Channels , 2000, Neuron.

[49]  S. Heinemann,et al.  Identification of the Kainate Receptor Subunits Underlying Modulation of Excitatory Synaptic Transmission in the CA3 Region of the Hippocampus , 2000, The Journal of Neuroscience.

[50]  S. Heinemann,et al.  Subunit Composition of Kainate Receptors in Hippocampal Interneurons , 2000, Neuron.

[51]  Y. Ben-Ari,et al.  Kainate, a double agent that generates seizures: two decades of progress , 2000, Trends in Neurosciences.

[52]  E. Gouaux,et al.  Mechanisms for Activation and Antagonism of an AMPA-Sensitive Glutamate Receptor Crystal Structures of the GluR2 Ligand Binding Core , 2000, Neuron.

[53]  G. Collingridge,et al.  reply: Kainate receptors and synaptic plasticity , 2000, Nature.

[54]  R. Nicoll,et al.  Synaptic Activation of Presynaptic Kainate Receptors on Hippocampal Mossy Fiber Synapses , 2000, Neuron.

[55]  C. Mulle,et al.  Kainate receptor-mediated synaptic currents in cerebellar Golgi cells are not shaped by diffusion of glutamate. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[56]  R. Nicoll,et al.  Synaptic kainate receptors , 2000, Current Opinion in Neurobiology.

[57]  J. Rossier,et al.  Classification of fusiform neocortical interneurons based on unsupervised clustering. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[58]  S. Heinemann,et al.  NMDA-Dependent Modulation of Hippocampal Kainate Receptors by Calcineurin and Ca2+/Calmodulin-Dependent Protein Kinase , 2000, The Journal of Neuroscience.

[59]  M. Hollmann,et al.  Expression of 15 Glutamate Receptor Subunits and Various Splice Variants in Tissue Slices and Single Neurons of Brainstem Nuclei and Potential Functional Implications , 2000, Journal of neurochemistry.

[60]  Christophe Mulle,et al.  Functional GluR6 Kainate Receptors in the Striatum: Indirect Downregulation of Synaptic Transmission , 2000, The Journal of Neuroscience.

[61]  J. Malva,et al.  Pertussis toxin prevents presynaptic inhibition by kainate receptors of rat hippocampal [3H]GABA release , 2000, FEBS letters.

[62]  H. Kamiya,et al.  Kainate receptor‐mediated presynaptic inhibition at the mouse hippocampal mossy fibre synapse , 2000, The Journal of physiology.

[63]  A. Rodríguez-Moreno,et al.  Two populations of kainate receptors with separate signaling mechanisms in hippocampal interneurons. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[64]  M. Nieto,et al.  GluR5 and GluR6 Kainate Receptor Subunits Coexist in Hippocampal Neurons and Coassemble to Form Functional Receptors , 2000, The Journal of Neuroscience.

[65]  G. Collingridge,et al.  Kainate receptors are involved in synaptic plasticity , 1999, Nature.

[66]  R. Nicoll,et al.  Mechanisms underlying kainate receptor-mediated disinhibition in the hippocampus. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[67]  S. Heinemann,et al.  Generation and Analysis of GluR5(Q636R) Kainate Receptor Mutant Mice , 1999, The Journal of Neuroscience.

[68]  M. Mayer,et al.  Heteromeric Kainate Receptors Formed by the Coassembly of GluR5, GluR6, and GluR7 , 1999, The Journal of Neuroscience.

[69]  D. Kullmann,et al.  Synaptically released glutamate reduces gamma-aminobutyric acid (GABA)ergic inhibition in the hippocampus via kainate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[70]  J. Isaac,et al.  Developmental and activity- dependent regulation of kainate receptors at thalamocortical synapses , 1999, Nature.

[71]  R. Cunha,et al.  Kainate receptors coupled to G(i)/G(o) proteins in the rat hippocampus. , 1999, Molecular pharmacology.

[72]  A. N. van den Pol,et al.  Kainate acts at presynaptic receptors to increase GABA release from hypothalamic neurons. , 1999, Journal of neurophysiology.

[73]  L. Stanfa,et al.  The role of non-N-methyl-d-aspartate ionotropic glutamate receptors in the spinal transmission of nociception in normal animals and animals with carrageenan inflammation , 1999, Neuroscience.

[74]  K. Kajander,et al.  The kainate receptor antagonist 2S,4R-4-methylglutamate attenuates mechanical allodynia and thermal hyperalgesia in a rat model of nerve injury , 1999, Neuroscience.

[75]  Lu-Yang Wang,et al.  Distinct kainate receptor phenotypes in immature and mature mouse cerebellar granule cells , 1999, The Journal of physiology.

[76]  H. Engelman,et al.  Activation of Kainate Receptors on Rat Sensory Neurons Evokes Action Potential Firing and May Modulate Transmitter Release , 1999, Annals of the New York Academy of Sciences.

[77]  R. Dingledine,et al.  The glutamate receptor ion channels. , 1999, Pharmacological reviews.

[78]  S. Heinemann,et al.  Kainate Receptor-Mediated Responses in the CA1 Field of Wild-Type and GluR6-Deficient Mice , 1999, The Journal of Neuroscience.

[79]  E. A. Schwartz,et al.  Kainate receptors mediate synaptic transmission between cones and ‘Off’ bipolar cells in a mammalian retina , 1999, Nature.

[80]  M. Zhuo,et al.  Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord , 1999, Nature.

[81]  J. Rossier,et al.  Properties of bipolar VIPergic interneurons and their excitation by pyramidal neurons in the rat neocortex , 1998, The European journal of neuroscience.

[82]  E. Gouaux,et al.  Structure of a glutamate-receptor ligand-binding core in complex with kainate , 1998, Nature.

[83]  R. Nicoll,et al.  Synaptic activation of kainate receptors on hippocampal interneurons , 1998, Nature Neuroscience.

[84]  Y. Ben-Ari,et al.  GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells , 1998, Nature Neuroscience.

[85]  G. Collingridge,et al.  The GluR5 subtype of kainate receptor regulates excitatory synaptic transmission in areas CA1 and CA3 of the rat hippocampus , 1998, Neuropharmacology.

[86]  D. Bleakman,et al.  Neuropharmacology of AMPA and kainate receptors , 1998, Neuropharmacology.

[87]  M. Rogawski,et al.  GluR5 kainate receptor mediated synaptic transmission in rat basolateral amygdala in vitro , 1998, Neuropharmacology.

[88]  J. E. Huettner,et al.  Antagonism of neuronal kainate receptors by lanthanum and gadolinium , 1998, Neuropharmacology.

[89]  A. Rodríguez-Moreno,et al.  Activation and desensitization properties of native and recombinant kainate receptors , 1998, Neuropharmacology.

[90]  P. Ornstein,et al.  Actions of kainate and AMPA selective glutamate receptor ligands on nociceptive processing in the spinal cord , 1998, Neuropharmacology.

[91]  P. Ornstein,et al.  Decahydroisoquinolines: novel competitive AMPA/kainate antagonists with neuroprotective effects in global cerebral ischaemia , 1998, Neuropharmacology.

[92]  C. Garner,et al.  SAP90 Binds and Clusters Kainate Receptors Causing Incomplete Desensitization , 1998, Neuron.

[93]  J. Howe,et al.  High‐affinity kainate‐type ion channels in rat cerebellar granule cells , 1998, The Journal of physiology.

[94]  A. Rodríguez-Moreno,et al.  Kainate Receptor Modulation of GABA Release Involves a Metabotropic Function , 1998, Neuron.

[95]  H. Kamiya,et al.  Kainate receptor‐mediated inhibition of presynaptic Ca2+ influx and EPSP in area CA1 of the rat hippocampus , 1998, The Journal of physiology.

[96]  R. Twyman,et al.  The methylglutamate, SYM 2081, is a potent and highly selective agonist at kainate receptors. , 1998, The Journal of pharmacology and experimental therapeutics.

[97]  Fred H. Gage,et al.  Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice , 1998, Nature.

[98]  R. Coggeshall,et al.  Ultrastructural analysis of NMDA, AMPA, and kainate receptors on unmyelinated and myelinated axons in the periphery , 1998, The Journal of comparative neurology.

[99]  P. Ornstein,et al.  Kainate GluR5 receptor subtype mediates the nociceptive response to formalin in the rat , 1998, Neuropharmacology.

[100]  J. Howe,et al.  Characterization of RNA editing of the glutamate-receptor subunits GluR5 and GluR6 in granule cells during cerebellar development. , 1997, Brain research. Molecular brain research.

[101]  S. Heinemann,et al.  Rat GluR7 and a Carboxy-Terminal Splice Variant, GluR7b, Are Functional Kainate Receptor Subunits with a Low Sensitivity to Glutamate , 1997, Neuron.

[102]  G. Collingridge,et al.  The synaptic activation of the GluR5 subtype of kainate receptor in area CA3 of the rat hippocampus , 1997, Neuropharmacology.

[103]  G. Collingridge,et al.  A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission , 1997, Nature.

[104]  A. Rodríguez-Moreno,et al.  Kainate Receptors Presynaptically Downregulate GABAergic Inhibition in the Rat Hippocampus , 1997, Neuron.

[105]  S. Traynelis,et al.  Control of rat GluR6 glutamate receptor open probability by protein kinase A and calcineurin , 1997, The Journal of physiology.

[106]  N. Noro,et al.  Glutamate Receptor Subunits GluR5 and KA-2 Are Coexpressed in Rat Trigeminal Ganglion Neurons , 1997, The Journal of Neuroscience.

[107]  M. Benveniste,et al.  Permeation and block of rat glur6 glutamate receptor channels by internal and external polyamines , 1997, The Journal of physiology.

[108]  Robert C. Malenka,et al.  Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons , 1997, Nature.

[109]  G. Collingridge,et al.  The synaptic activation of kainate receptors , 1997, Nature.

[110]  J. E. Huettner,et al.  Desensitization of Kainate Receptors by Kainate, Glutamate and Diastereomers of 4-Methylglutamate , 1997, Neuropharmacology.

[111]  J. E. Huettner,et al.  Activation and Desensitization of Hippocampal Kainate Receptors , 1997, The Journal of Neuroscience.

[112]  R. Cunha,et al.  Inhibition of [3H] gamma-aminobutyric acid release by kainate receptor activation in rat hippocampal synaptosomes. , 1997, European journal of pharmacology.

[113]  S. Heinemann,et al.  Spatial distribution of kainate receptor subunit mRNA in the mouse basal ganglia and ventral mesencephalon , 1997, The Journal of comparative neurology.

[114]  W. Paschen,et al.  Developmental changes of RNA editing of glutamate receptor subunits GluR5 and GluR6: in vivo versus in vitro. , 1997, Brain research. Developmental brain research.

[115]  B. Ballyk,et al.  Activity of 2,3-benzodiazepines at Native Rat and Recombinant Human Glutamate Receptors In Vitro: Stereospecificity and Selectivity Profiles , 1996, Neuropharmacology.

[116]  E. Nielsen,et al.  Comparative Antagonism of Kainate‐activated Kainate and AMPA Receptors in Hippocampal Neurons , 1996, The European journal of neuroscience.

[117]  B. Sakmann,et al.  Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues. , 1996, The Journal of physiology.

[118]  J. Howe Homomeric and heteromeric ion channels formed from the kainate-type subunits GluR6 and KA2 have very small, but different, unitary conductances. , 1996, Journal of neurophysiology.

[119]  D. Surmeier,et al.  Multiplicity of glutamate receptor subunits in single striatal neurons: an RNA amplification study. , 1996, Molecular pharmacology.

[120]  B. Ballyk,et al.  Pharmacological discrimination of GluR5 and GluR6 kainate receptor subtypes by (3S,4aR,6R,8aR)-6-[2-(1(2)H-tetrazole-5-yl)ethyl]decahyd roisdoquinoline-3 carboxylic-acid. , 1996, Molecular pharmacology.

[121]  D. Feldmeyer,et al.  Effect of RNA editing and subunit co‐assembly single‐channel properties of recombinant kainate receptors. , 1996, The Journal of physiology.

[122]  K. A. Jones,et al.  Substituted 1,2-dihydrophthalazines: potent, selective, and noncompetitive inhibitors of the AMPA receptor. , 1996, Journal of medicinal chemistry.

[123]  G. Collingridge,et al.  Regulation of glutamate release by presynaptic kainate receptors in the hippocampus , 1996, Nature.

[124]  D. Hampson,et al.  Palmitoylation of the GluR6 kainate receptor. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[125]  K. Keinänen,et al.  Molecular dissection of the agonist binding site of an AMPA receptor. , 1995, The EMBO journal.

[126]  T. Isa,et al.  Spermine mediates inward rectification of Ca(2+)-permeable AMPA receptor channels. , 1995, Neuroreport.

[127]  M A Rogawski,et al.  Intracellular polyamines mediate inward rectification of Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[128]  M. Mayer,et al.  Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block , 1995, Neuron.

[129]  P. Jonas,et al.  Block of native Ca(2+)‐permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. , 1995, The Journal of physiology.

[130]  Sunjeev K Kamboj,et al.  Intracellular spermine confers rectification on rat calcium‐permeable AMPA and kainate receptors. , 1995, The Journal of physiology.

[131]  B Sakmann,et al.  Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. , 1995, The Journal of physiology.

[132]  J. Rossier,et al.  Kainate receptor subunits expressed in single cultured hippocampal neurons: Molecular and functional variants by RNA editing , 1995, Neuron.

[133]  J. E. Huettner,et al.  Differential antagonism of alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid-preferring and kainate-preferring receptors by 2,3-benzodiazepines. , 1995, Molecular pharmacology.

[134]  E. Audinat,et al.  Evidence for two types of non-NMDA receptors in rat cerebellar purkinje cells maintained in slice cultures , 1995, Neuropharmacology.

[135]  Raymond Dingledine,et al.  Topology profile for a glutamate receptor: Three transmembrane domains and a channel-lining reentrant membrane loop , 1995, Neuron.

[136]  S. Heinemann,et al.  Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins , 1994, Neuron.

[137]  Michael Hollmann,et al.  N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1 , 1994, Neuron.

[138]  R. Petralia,et al.  Histological and ultrastructural localization of the kainate receptor subunits, KA2 and GluR6/7, in the rat nervous system using selective antipeptide antibodies , 1994, The Journal of comparative neurology.

[139]  M. Rogawski,et al.  Non-N-methyl-D-aspartate receptor antagonism by 3-N-substituted 2,3-benzodiazepines: relationship to anticonvulsant activity. , 1994, The Journal of pharmacology and experimental therapeutics.

[140]  T. H. Johansen,et al.  Selective block of recombinant glur6 receptors by NS-102, a novel non-NMDA receptor antagonist. , 1994, European Journal of Pharmacology.

[141]  W. Wisden,et al.  Kainate receptor gene expression in the developing rat brain , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[142]  M. Khrestchatisky,et al.  Assessing the Extent of RNA Editing in the TMII Regions of GluR5 and GluR6 Kainate Receptors During Rat Brain Development , 1994, Journal of neurochemistry.

[143]  L. Raymond,et al.  Transmembrane topology of the glutamate receptor subunit GluR6. , 1994, The Journal of biological chemistry.

[144]  R. Harris,et al.  Rapid Communication Activation of Protein Kinase C Inhibits Kainate‐Induced Currents in Oocytes Expressing Glutamate Receptor Subunits , 1994, Journal of neurochemistry.

[145]  Marc G. Weisskopf,et al.  The role of Ca2+ channels in hippocampal mossy fiber synaptic transmission and long-term potentiation , 1994, Neuron.

[146]  B. Mellström,et al.  Functional kainate-selective glutamate receptors in cultured hippocampal neurons. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[147]  P. Seeburg,et al.  The differential expression of 16 NMDA and non-NMDA receptor subunits in the rat spinal cord and in periaqueductal gray , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[148]  G. Uhl,et al.  Expression and novel subunit isoforms of glutamate receptor genes GluR5 and GluR6. , 1993, Neuroreport.

[149]  M. Mayer,et al.  Differential modulation by cyclothiazide and concanavalin A of desensitization at native alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid- and kainate-preferring glutamate receptors. , 1993, Molecular pharmacology.

[150]  W Wisden,et al.  A complex mosaic of high-affinity kainate receptors in rat brain , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[151]  B. Ault,et al.  Activation of nociceptive reflexes by peripheral kainate receptors. , 1993, The Journal of pharmacology and experimental therapeutics.

[152]  B. Sakmann,et al.  Determinants of ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: Diversity by RNA editing , 1993, Neuron.

[153]  L. Wang,et al.  Phosphorylation and modulation of a kainate receptor (GluR6) by cAMP-dependent protein kinase. , 1993, Science.

[154]  L. Raymond,et al.  Phosphorylation and modulation of recombinant GluR6 glutamate receptors by cAMP-dependent protein kinase , 1993, Nature.

[155]  S. Heinemann,et al.  Ca2+ permeability of unedited and edited versions of the kainate selective glutamate receptor GluR6. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[156]  P. Seeburg,et al.  High‐affinity kainate a domoate receptors in rat brain , 1992, FEBS letters.

[157]  K. Sakimura,et al.  Molecular diversity of the NMDA receptor channel , 1992, Nature.

[158]  Bert Sakmann,et al.  Heteromeric NMDA Receptors: Molecular and Functional Distinction of Subtypes , 1992, Science.

[159]  R. Oswald,et al.  Coupling of a purified goldfish brain kainate receptor with a pertussis toxin-sensitive G protein. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[160]  B. Sakmann,et al.  The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits , 1992, Neuron.

[161]  B. Sakmann,et al.  A glutamate receptor channel with high affinity for domoate and kainate. , 1992, The EMBO journal.

[162]  C. Stevens,et al.  Cloning of a putative glutamate receptor: A low affinity kainate-binding subunit , 1992, Neuron.

[163]  K. Sakimura,et al.  Primary structure and expression of the γ 2 subunit of the glutamate receptor channel selective for kainate , 1992, Neuron.

[164]  S. Nakanishi,et al.  Molecular cloning and characterization of the rat NMDA receptor , 1991, Nature.

[165]  P. Seeburg,et al.  RNA editing in brain controls a determinant of ion flow in glutamate-gated channels , 1991, Cell.

[166]  P. Seeburg,et al.  Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells , 1991, Nature.

[167]  S. Heinemann,et al.  Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA , 1991, Nature.

[168]  H. Sugiyama,et al.  Roles of glutamate receptors in long-term potentiation at hippocampal mossy fiber synapses. , 1991, Neuroreport.

[169]  M. Mayer,et al.  Kinetic analysis of interactions between kainate and AMPA: Evidence for activation of a single receptor in mouse hippocampal neurons , 1991, Neuron.

[170]  P. Calabresi,et al.  Kainic acid on neostriatal neurons intracellularly recorded in vitro: electrophysiological evidence for differential neuronal sensitivity , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[171]  S. Heinemann,et al.  Cloning of a novel glutamate receptor subunit, GluR5: Expression in the nervous system during development , 1990, Neuron.

[172]  J. E. Huettner Glutamate receptor channels in rat DRG neurons: Activation by kainate and quisqualate and blockade of desensitization by con A , 1990, Neuron.

[173]  S. Heinemann,et al.  Molecular cloning and functional expression of glutamate receptor subunit genes. , 1990, Science.

[174]  B. Sakmann,et al.  A family of AMPA-selective glutamate receptors. , 1990, Science.

[175]  R. Nicoll,et al.  Comparison of two forms of long-term potentiation in single hippocampal neurons. , 1990, Science.

[176]  R. Nicoll,et al.  Analysis of excitatory synaptic action in pyramidal cells using whole‐cell recording from rat hippocampal slices. , 1990, The Journal of physiology.

[177]  G. Collingridge,et al.  Role of excitatory amino acid receptors in synaptic transmission in area CA1 of rat hippocampus , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[178]  M. Mayer,et al.  The physiology of excitatory amino acids in the vertebrate central nervous system , 1987, Progress in Neurobiology.

[179]  R. Wenthold,et al.  Solubilization of Kainic Acid Binding Sites from Rat Brain , 1987, Journal of neurochemistry.

[180]  C. Cotman,et al.  Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl d-aspartate antagonists , 1986, Neuroscience Letters.

[181]  R. H. Evans,et al.  The primary afferent depolarizing action of kainate in the rat , 1986, British journal of pharmacology.

[182]  O. Krishtal,et al.  Excitatory amino acid receptors in hippocampal neurons: Kainate fails to desensitize them , 1986, Neuroscience Letters.

[183]  P. Krogsgaard‐Larsen,et al.  Ibotenic acid analogues. Synthesis, molecular flexibility, and in vitro activity of agonists and antagonists at central glutamic acid receptors. , 1985, Journal of medicinal chemistry.

[184]  R S Fisher,et al.  Electrophysiological mechanisms of kainic acid-induced epileptiform activity in the rat hippocampal slice , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[185]  G. Collingridge,et al.  Effects of folic and kainic acids on synaptic responses of hippocampal neurones , 1984, Neuroscience.

[186]  G. Westbrook,et al.  Cellular and synaptic basis of kainic acid-induced hippocampal epileptiform activity , 1983, Brain Research.

[187]  J. Wamsley,et al.  Autoradiographic localization of high-affinity [3H]kainic acid binding sites in the rat forebrain. , 1983, European journal of pharmacology.

[188]  C. Cotman,et al.  The distribution of [3H]kainic acid binding sites in rat CNS as determined by autoradiography , 1982, Brain Research.

[189]  R. S. Sloviter,et al.  On the relationship between kainic acid-induced epileptiform activity and hippocampal neuronal damage , 1981, Neuropharmacology.

[190]  S. Deadwyler,et al.  Kainic acid produces depolarization of CA3 pyramidal cells in the in vitro hippocampal slice , 1981, Brain Research.

[191]  J. Coyle,et al.  Specific binding of [3H]kainic acid to receptor sites in rat brain. , 1979, Molecular pharmacology.

[192]  C. Cotman,et al.  Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells , 1978, Nature.

[193]  S. Heinemann,et al.  Kainate Receptors Are Involved in Short- and Long-Term Plasticity at Mossy Fiber Synapses in the Hippocampus , 2001, Neuron.

[194]  M. Sheng,et al.  Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. , 2000, Annual review of physiology.

[195]  G. Collingridge,et al.  Kainate receptors and synaptic plasticity. Authors' reply , 2000 .

[196]  J. Henley,et al.  Kainate receptors: subunits, synaptic localization and function. , 1999, Trends in pharmacological sciences.

[197]  P. Jonas,et al.  Ionotropic Glutamate Receptors in the CNS , 1999, Handbook of Experimental Pharmacology.

[198]  M. Morales,et al.  Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons , 1995, Neuron.

[199]  S. Heinemann,et al.  Cloned glutamate receptors. , 1994, Annual review of neuroscience.

[200]  J. Watkins,et al.  Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. , 1990, Trends in pharmacological sciences.

[201]  C. Cotman,et al.  The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. , 1989, Annual review of pharmacology and toxicology.

[202]  G. Collingridge,et al.  Excitatory amino acids in synaptic transmission in the Schaffer collateral‐commissural pathway of the rat hippocampus. , 1983, The Journal of physiology.

[203]  R. H. Evans,et al.  Excitatory amino acid transmitters. , 1981, Annual review of pharmacology and toxicology.

[204]  J. Watkins,et al.  Excitatory amino acid receptors and synaptic excitation in the mammalian central nervous system. , 1979, Journal de physiologie.