Multiscale simulation from atomistic to continuum – coupling molecular dynamics (MD) with the material point method (MPM)

A new multiscale simulation approach is introduced that couples atomistic-scale simulations using molecular dynamics (MD) with continuum-scale simulations using the recently developed material point method (MPM). In MPM, material continuum is represented by a finite collection of material points carrying all relevant physical characteristics, such as mass, acceleration, velocity, strain and stress. The use of material points at the continuum level provides a natural connection with the atoms in the lattice at the atomistic scale. A hierarchical mesh refinement technique in MPM is presented to scale down the continuum level to the atomistic level, so that material points at the fine level in MPM are allowed to directly couple with the atoms in MD. A one-to-one correspondence of MD atoms and MPM points is used in the transition region and non-local elastic theory is used to assure compatibility between MD and MPM regions, so that seamless coupling between MD and MPM can be accomplished. A silicon single crystal under uniaxial tension is used in demonstrating the viability of the technique. A Tersoff-type, three-body potential was used in the MD simulations. The coupled MD/MPM simulations show that silicon under nanometric tension experiences, with increasing elongation in elasticity, dislocation generation and plasticity by slip, void formation and propagation, formation of amorphous structure, necking, and final rupture. Results are presented in terms of stress–strain relationships at several strain rates, as well as the rate dependence of uniaxial material properties. This new multiscale computational method has potential for use in cases where a detailed atomistic-level analysis is necessary in localized spatially separated regions whereas continuum mechanics is adequate in the rest of the material.

[1]  Haimin Yao,et al.  Journal of the Mechanics and Physics of Solids , 2014 .

[2]  J. Kysar,et al.  Continuum simulations of directional dependence of crack growth along a copper/sapphire bicrystal interface. Part I: experiments and crystal plasticity background , 2001 .

[3]  H. Tan Combined atomistic and continuum simulation for fracture and corrosion , 2003 .

[4]  Rebecca M. Brannon,et al.  An Evaluation of the Material Point Method , 2002 .

[5]  Smith,et al.  Multiscale simulation of loading and electrical resistance in silicon nanoindentation , 2000, Physical review letters.

[6]  H. Noguchi,et al.  Combined Method of Molecular Dynamics with Micromechanics in Simulations of Crack Propagation , 2001 .

[7]  van der Erik Giessen,et al.  Discrete dislocation plasticity: a simple planar model , 1995 .

[8]  Peter Gumbsch,et al.  An atomistic study of brittle fracture: Toward explicit failure criteria from atomistic modeling , 1995 .

[9]  N. Chandrasekaran,et al.  Molecular dynamic simulations of uniaxial tension at nanoscale of semiconductor materials for micro-electro-mechanical systems (MEMS) applications , 2003 .

[10]  R. Asaro,et al.  Overview no. 42 Texture development and strain hardening in rate dependent polycrystals , 1985 .

[11]  L E Shilkrot,et al.  Coupled atomistic and discrete dislocation plasticity. , 2002, Physical review letters.

[12]  Domenico Lahaye,et al.  Introduction to Finite Elements , 2008 .

[13]  Nasr M. Ghoniem,et al.  Affine covariant-contravariant vector forms for the elastic field of parametric dislocations in isotropic crystals , 2002 .

[14]  Howard L. Schreyer,et al.  Modeling delamination as a strong discontinuity with the material point method , 2002 .

[15]  Michael Ortiz,et al.  Nanomechanics of Defects in Solids , 1998 .

[16]  S. Papson,et al.  “Model” , 1981 .

[17]  Efthimios Kaxiras,et al.  An Overview of Multiscale Simulations of Materials , 2004 .

[18]  J. Lépinoux,et al.  The dynamic organization of dislocation structures: A simulation , 1987 .

[19]  J. Rice,et al.  Constitutive analysis of elastic-plastic crystals at arbitrary strain , 1972 .

[20]  Y. W. Zhang,et al.  SIMULATION OF NUCLEATION AND EMISSION OF DISLOCATIONS BY MOLECULAR-DYNAMICS METHOD , 1995 .

[21]  L. Anand,et al.  Crystallographic texture evolution in bulk deformation processing of FCC metals , 1992 .

[22]  N. Ghoniem,et al.  The Emerging Role of Multiscale Modeling in Nano- and Micro-mechanics of Materials , 2002 .

[23]  E. Kaxiras,et al.  Polarization switching in PbTiO3: an ab initio finite element simulation , 2002 .

[24]  Hussein M. Zbib,et al.  A multiscale model of plasticity , 2002 .

[25]  William A. Curtin,et al.  A coupled atomistic/continuum model of defects in solids , 2002 .

[26]  Donald W. Brenner,et al.  The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation , 2003 .

[27]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[28]  J. Brackbill,et al.  The material-point method for granular materials , 2000 .

[29]  Deborah Sulsky,et al.  Implicit dynamics in the material-point method , 2004 .

[30]  F. Roters,et al.  Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals , 2004 .

[31]  J. Brackbill,et al.  An implicit particle-in-cell method for granular materials , 2002 .

[32]  D. Sulsky Erratum: Application of a particle-in-cell method to solid mechanics , 1995 .

[33]  Yang Wei,et al.  Atomistic/continuum simulation of interfacial fracture part I: Atomistic simulation , 1994 .

[34]  N. Chandrasekaran,et al.  Molecular dynamics (MD) simulation of uniaxial tension of some single-crystal cubic metals at nanolevel , 2001 .

[35]  J. Reddy An introduction to the finite element method , 1989 .

[36]  T. Fang,et al.  Influence of temperature on tensile and fatigue behavior of nanoscale copper using molecular dynamics simulation , 2003 .

[37]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[38]  E Weinan,et al.  A dynamic atomistic-continuum method for the simulation of crystalline materials , 2001 .

[39]  Noam Bernstein,et al.  Dynamic Fracture of Silicon: Concurrent Simulation of Quantum Electrons, Classical Atoms, and the Continuum Solid , 2000 .

[40]  H. Noguchi,et al.  A method of seamlessly combining a crack tip molecular dynamics enclave with a linear elastic outer domain in simulating elastic–plastic crack advance , 1997 .

[41]  Coarse-Grained Molecular Dynamics: Dissipation due to Internal Modes , 2001 .

[42]  Brodbeck,et al.  Instability dynamics of fracture: A computer simulation investigation. , 1994, Physical review letters.

[43]  Geoffrey H. Campbell,et al.  Theory, simulation, and modeling of interfaces in materials—bridging the length-scale gap: a workshop report , 1995 .

[44]  George N Frantziskonis,et al.  Wavelet methods for analysing and bridging simulations at complementary scales - the compound wavelet matrix and application to microstructure evolution , 2000 .

[45]  N. Chandrasekaran,et al.  Finite element simulation of plane strain plastic–elastic indentation on single-crystal silicon , 2001 .

[46]  Leonid V. Zhigilei,et al.  A combined molecular dynamics and finite element method technique applied to laser induced pressure wave propagation , 1999 .

[47]  Michael Ortiz,et al.  Nanoindentation and incipient plasticity , 1999 .

[48]  Hussein M. Zbib,et al.  On plastic deformation and the dynamics of 3D dislocations , 1998 .

[49]  M. F. Kanninen,et al.  Inelastic Behavior of Solids , 1970, Science.

[50]  Michael Ortiz,et al.  Quasicontinuum simulation of fracture at the atomic scale , 1998 .

[51]  S. Bardenhagen,et al.  The Generalized Interpolation Material Point Method , 2004 .

[52]  A. Belegundu,et al.  Introduction to Finite Elements in Engineering , 1990 .

[53]  Zhou,et al.  Dislocation nucleation and crack stability: Lattice Green's-function treatment of cracks in a model hexagonal lattice. , 1993, Physical review. B, Condensed matter.

[54]  M. Cross,et al.  A multi-scale atomistic-continuum modelling of crack propagation in a two-dimensional macroscopic plate , 1998 .

[55]  S. Bardenhagen,et al.  Energy Conservation Error in the Material Point Method for Solid Mechanics , 2002 .

[56]  G. Pharr,et al.  The correlation of the indentation size effect measured with indenters of various shapes , 2002 .

[57]  Wei Yang,et al.  Molecular dynamics simulation on burst and arrest of stacking faults in nanocrystalline Cu under nanoindentation , 2003 .

[58]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[59]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[60]  John A. Nairn,et al.  Hierarchical, adaptive, material point method for dynamic energy release rate calculations , 2002 .

[61]  R. LeSar,et al.  Multipole expansion of dislocation interactions: Application to discrete dislocations , 2002 .

[62]  W. Zieliński,et al.  Dislocation distribution under a microindentation into an iron-silicon single crystal , 1995 .

[63]  H. Fischmeister,et al.  Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model , 1991 .

[64]  C. Hartley Multi-scale modeling of dislocation processes , 2001 .

[65]  Honglai Tan,et al.  Nonlinear motion of crack tip atoms during cleavage processes , 1996 .

[66]  Honglai Tan,et al.  Evolution of crack tip process zones , 1994 .

[67]  R. Phillips,et al.  Multiscale modeling in the mechanics of materials , 1998 .

[68]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[69]  John A. Nairn,et al.  Material Point Method Calculations with Explicit Cracks , 2003 .

[70]  Rebecca M. Brannon,et al.  An evaluation of the MPM for simulating dynamic failure with damage diffusion , 2002 .

[71]  C. Woodward,et al.  Atomistic simulation of cross-slip processes in model fcc structures , 1999 .

[72]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[73]  Marc Fivel,et al.  Three-dimensional modeling of indent-induced plastic zone at a mesoscale , 1998 .

[74]  Michael Ortiz,et al.  Mixed Atomistic-Continuum Models of Material Behavior: The Art of Transcending Atomistics and Informing Continua , 2001 .

[75]  William A. Curtin,et al.  Coupled Atomistic/Discrete Dislocation Simulations of Nanoindentation at Finite Temperature , 2005 .

[76]  Zhou,et al.  Lattice imperfections studied by use of lattice Green's functions. , 1992, Physical review. B, Condensed matter.

[77]  N. Ghoniem,et al.  Multiscale modelling of nanomechanics and micromechanics: an overview , 2003 .

[78]  William A. Curtin,et al.  Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics , 2004 .

[79]  H. Zbib,et al.  Modeling planar dislocation boundaries using multi-scale dislocation dynamics plasticity , 2004 .

[80]  Howard L. Schreyer,et al.  Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems , 1996 .

[81]  Noam Bernstein,et al.  Mixed finite element and atomistic formulation for complex crystals , 1999 .

[82]  A. Nakano,et al.  Coupling length scales for multiscale atomistics-continuum simulations: atomistically induced stress distributions in Si/Si3N4 nanopixels. , 2001, Physical review letters.

[83]  Alan Needleman,et al.  An analysis of nonuniform and localized deformation in ductile single crystals , 1982 .

[84]  G. Voyiadjis,et al.  Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments , 2004 .

[85]  James E. Guilkey,et al.  Implicit time integration for the material point method: Quantitative and algorithmic comparisons with the finite element method , 2003 .

[86]  Yonggang Huang,et al.  A User-Material Subroutine Incorporating Single Crystal Plasticity in the ABAQUS Finite Element Program , 1991 .

[87]  R. LeSar,et al.  Coarse-grained descriptions of dislocation behaviour , 2003 .

[88]  Michael Ortiz,et al.  Quasicontinuum models of fracture and plasticity , 1998 .

[89]  Gregory A. Voth,et al.  Interfacing continuum and molecular dynamics: An application to lipid bilayers , 2001 .

[90]  D. Rodney,et al.  Structure and Strength of Dislocation Junctions: An Atomic Level Analysis , 1999 .

[91]  Michalina Bickford,et al.  Concise Encyclopedia of Chemical Technology , 1999 .

[92]  Robert E. Rudd,et al.  COARSE-GRAINED MOLECULAR DYNAMICS AND THE ATOMIC LIMIT OF FINITE ELEMENTS , 1998 .

[93]  E. B. Tadmor,et al.  Quasicontinuum models of interfacial structure and deformation , 1998 .

[94]  J. Q. Broughton,et al.  Concurrent Coupling of Length Scales in Solid State Systems , 2000 .

[95]  Ellad B. Tadmor,et al.  Nucleation of dislocations beneath a plane strain indenter , 2000 .

[96]  Michael Ortiz,et al.  Mixed Atomistic and Continuum Models of Deformation in Solids , 1996 .

[97]  Noam Bernstein,et al.  Multiscale simulations of silicon nanoindentation , 2001 .

[98]  Howard L. Schreyer,et al.  Localization of plastic deformation along grain boundaries in a hardening material , 2000 .

[99]  William G. Hoover,et al.  Massively parallel computer simulation of plane‐strain elastic–plastic flow via nonequilibrium molecular dynamics and Lagrangian continuum mechanics , 1992 .

[100]  Richard Alan Lesar,et al.  Multipole representation of the elastic field of dislocation ensembles , 2004 .

[101]  Harold S. Park,et al.  An introduction to computational nanomechanics and materials , 2004 .

[102]  Nasr M. Ghoniem,et al.  Parametric dislocation dynamics: A thermodynamics-based approach to investigations of mesoscopic plastic deformation , 2000 .

[103]  R. Rudd Coarse-Grained Molecular Dynamics and Multiscale Modeling of NEMS Resonators , 2001 .

[104]  C. Hartley A method for linking thermally activated dislocation mechanisms of yielding with continuum plasticity theory , 2003 .

[105]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[106]  E. Kröner,et al.  Kontinuumstheorie der Versetzungen und Eigenspannungen , 1958 .

[107]  Peter Gumbsch,et al.  On the continuum versus atomistic descriptions of dislocation nucleation and cleavage in nickel , 1995 .

[108]  Steven G. Parker A component-based architecture for parallel multi-physics PDE simulation , 2006, Future Gener. Comput. Syst..

[109]  Richard Alan Lesar,et al.  O(N) algorithm for dislocation dynamics , 1995 .

[110]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[111]  M. Ortiz,et al.  An analysis of the quasicontinuum method , 2001, cond-mat/0103455.

[112]  Nigel D Goldenfeld,et al.  Crystals, Defects and Microstructures: Modeling across Scales , 2002 .

[113]  H. Noguchi,et al.  A combined method of molecular dynamics with micromechanics improved by moving the molecular dynamics region successively in the simulation of elastic--plastic crack propagation , 1998 .

[114]  Rajiv K. Kalia,et al.  Hybrid finite-element/molecular-dynamics/electronic-density-functional approach to materials simulations on parallel computers , 2001 .