Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues

This paper proposes a survey and critical analysis focused on a variety of chemotaxis models in biology, namely the classical Keller–Segel model and its subsequent modifications, which, in several cases, have been developed to obtain models that prevent the non-physical blow up of solutions. The presentation is organized in three parts. The first part focuses on a survey of some sample models, namely the original model and some of its developments, such as flux limited models, or models derived according to similar concepts. The second part is devoted to the qualitative analysis of analytic problems, such as the existence of solutions, blow-up and asymptotic behavior. The third part deals with the derivation of macroscopic models from the underlying description, delivered by means of kinetic theory methods. This approach leads to the derivation of classical models as well as that of new models, which might deserve attention as far as the related analytic problems are concerned. Finally, an overview of the entire contents leads to suggestions for future research activities.

[1]  Sachiko Ishida,et al.  Boundedness in quasilinear Keller–Segel systems of parabolic–parabolic type on non-convex bounded domains , 2014 .

[2]  B. Perthame,et al.  Existence of solutions of the hyperbolic Keller-Segel model , 2006, math/0612485.

[3]  F. A. Chalub,et al.  Global convergence of a kinetic model of chemotaxis to a perturbed Keller-Segel model , 2006 .

[4]  Elena De Angelis,et al.  On the mathematical theory of post-Darwinian mutations, selection, and evolution , 2014 .

[5]  Tohru Tsujikawa,et al.  Exponential attractor for a chemotaxis-growth system of equations , 2002 .

[6]  J. Soler,et al.  Morphogenetic action through flux-limited spreading. , 2013, Physics of life reviews.

[7]  Abdelghani Bellouquid ON THE ASYMPTOTIC ANALYSIS OF KINETIC MODELS TOWARDS THE COMPRESSIBLE EULER AND ACOUSTIC EQUATIONS , 2004 .

[8]  Xinru Cao,et al.  Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with logistic source , 2014 .

[9]  Finite-Time Blowup in a Supercritical Quasilinear Parabolic-Parabolic Keller-Segel System in Dimension 2 , 2012, 1201.3270.

[10]  Nicola Bellomo,et al.  On the derivation of macroscopic tissue equations from hybrid models of the kinetic theory of multicellular growing systems — The effect of global equilibrium☆ , 2009 .

[11]  C. Schmeiser,et al.  Stochastic Particle Approximation for Measure Valued Solutions of the 2D Keller-Segel System , 2009 .

[12]  A. Klar,et al.  THE SCALAR KELLER–SEGEL MODEL ON NETWORKS , 2014 .

[13]  Christian A. Ringhofer,et al.  Moment Methods for the Semiconductor Boltzmann Equation on Bounded Position Domains , 2001, SIAM J. Numer. Anal..

[14]  Alexander Lorz,et al.  Global Solutions to the Coupled Chemotaxis-Fluid Equations , 2010 .

[15]  Yin Yang,et al.  On Existence of Global Solutions and Blow-Up to a System of Reaction-Diffusion Equations Modelling Chemotaxis , 2001, SIAM J. Math. Anal..

[16]  Yann Brenier,et al.  Extended Monge-Kantorovich Theory , 2003 .

[17]  Christoph Walker,et al.  Global Existence of Classical Solutions for a Haptotaxis Model , 2007, SIAM J. Math. Anal..

[18]  L. Payne,et al.  Decay for a Keller–Segel Chemotaxis Model , 2009 .

[19]  Juan Soler,et al.  MULTISCALE BIOLOGICAL TISSUE MODELS AND FLUX-LIMITED CHEMOTAXIS FOR MULTICELLULAR GROWING SYSTEMS , 2010 .

[20]  H. Kozono,et al.  Global strong solution to the semi-linear Keller-Segel system of parabolic-parabolic type with small data in scale invariant spaces , 2009 .

[21]  Avner Friedman,et al.  Mathematical Analysis of a Model for the Initiation of Angiogenesis , 2002, SIAM J. Math. Anal..

[22]  Michael Winkler,et al.  Global Large-Data Solutions in a Chemotaxis-(Navier–)Stokes System Modeling Cellular Swimming in Fluid Drops , 2012 .

[23]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[24]  Piotr Biler,et al.  The Debye system: existence and large time behavior of solutions , 1994 .

[25]  Takashi Suzuki,et al.  Reaction terms avoiding aggregation in slow fluids , 2015 .

[26]  N. Bellomo,et al.  On the derivation of angiogenesis tissue models: From the micro-scale to the macro-scale , 2015 .

[27]  P. Maini,et al.  Development and applications of a model for cellular response to multiple chemotactic cues , 2000, Journal of mathematical biology.

[28]  José A. Carrillo,et al.  Volume effects in the Keller-Segel model : energy estimates preventing blow-up , 2006 .

[29]  Martin A. Nowak,et al.  Games on graphs , 2014 .

[30]  Richard L. Miller Demonstration of sperm chemotaxis in Echinodermata: Asteroidea, Holothuroidea, Ophiuroidea , 1985 .

[31]  Michael Winkler,et al.  Global Weak Solutions in a PDE-ODE System Modeling Multiscale Cancer Cell Invasion , 2014, SIAM J. Math. Anal..

[32]  Christian Stinner,et al.  Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions , 2011, 1112.6202.

[33]  A. Stevens,et al.  Qualitative Behavior of a Keller–Segel Model with Non-Diffusive Memory , 2010 .

[34]  V. Caselles,et al.  Finite Propagation Speed for Limited Flux Diffusion Equations , 2006 .

[35]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[36]  M. Chaplain,et al.  Mathematical modelling of cancer cell invasion of tissue , 2005, Math. Comput. Model..

[37]  Y. Giga,et al.  Asymptotically self‐similar blow‐up of semilinear heat equations , 1985 .

[38]  Chuan Xue Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling , 2015, Journal of mathematical biology.

[39]  Nicola Bellomo,et al.  On multiscale models of pedestrian crowds from mesoscopic to macroscopic , 2015 .

[40]  Dirk Horstmann,et al.  Blow-up in a chemotaxis model without symmetry assumptions , 2001, European Journal of Applied Mathematics.

[41]  Yanping Lin,et al.  On the $L^2$-moment closure of transport equations: The Cattaneo approximation , 2004 .

[42]  Sachiko Ishida,et al.  Global-in-time bounded weak solutions to a degenerate quasilinear Keller–Segel system with rotation , 2014 .

[43]  Y. Sugiyama Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis , 2007, Differential and Integral Equations.

[44]  Eduard Feireisl,et al.  On convergence to equilibria for the Keller–Segel chemotaxis model , 2007 .

[45]  Martin Burger,et al.  The Keller-Segel Model for Chemotaxis with Prevention of Overcrowding: Linear vs. Nonlinear Diffusion , 2006, SIAM J. Math. Anal..

[46]  Juan Soler,et al.  ON THE ASYMPTOTIC THEORY FROM MICROSCOPIC TO MACROSCOPIC GROWING TISSUE MODELS: AN OVERVIEW WITH PERSPECTIVES , 2012 .

[47]  Michael Winkler,et al.  Global solutions in a fully parabolic chemotaxis system with singular sensitivity , 2011 .

[48]  A. Bellouquid,et al.  Mathematical methods and tools of kinetic theory towards modelling complex biological systems , 2005 .

[49]  Zhian Wang,et al.  Singularity formation in chemotaxis systems with volume-filling effect , 2011 .

[50]  Pascal Silberzan,et al.  Mathematical Description of Bacterial Traveling Pulses , 2009, PLoS Comput. Biol..

[51]  Yoshie Sugiyama,et al.  Global existence and decay properties for a degenerate Keller–Segel model with a power factor in drift term , 2006 .

[52]  Michael Winkler,et al.  Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening , 2014 .

[53]  Sining Zheng,et al.  Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source , 2014 .

[54]  Youshan Tao,et al.  Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant , 2012 .

[55]  Y. Tao,et al.  Energy-type estimates and global solvability in a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant , 2014 .

[56]  Kyungkeun Kang,et al.  Existence of Smooth Solutions to Coupled Chemotaxis-Fluid Equations , 2011, 1112.4566.

[57]  C. D. Levermore,et al.  Moment closure hierarchies for kinetic theories , 1996 .

[58]  Mark A. J. Chaplain,et al.  Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity , 2006, Networks Heterog. Media.

[59]  Lihe Wang,et al.  LARGE-TIME BEHAVIOR OF A PARABOLIC-PARABOLIC CHEMOTAXIS MODEL WITH LOGARITHMIC SENSITIVITY IN ONE DIMENSION , 2012 .

[60]  Cristian Morales-Rodrigo,et al.  Asymptotic behaviour of global solutions to a model of cell invasion , 2009, 0907.0885.

[61]  Nicola Bellomo,et al.  Modeling chemotaxis from $L^2$--closure moments in kinetic theory of active particles , 2013 .

[62]  P. K. Maini,et al.  Overview of Mathematical Approaches Used to Model Bacterial Chemotaxis II: Bacterial Populations , 2008, Bulletin of mathematical biology.

[63]  Yoshikazu Giga,et al.  Abstract LP estimates for the Cauchy problem with applications to the Navier‐Stokes equations in exterior domains , 1991 .

[64]  Piotr Biler,et al.  Large mass self-similar solutions of the parabolic–parabolic Keller–Segel model of chemotaxis , 2009, Journal of mathematical biology.

[65]  N. Bellomo,et al.  MULTICELLULAR BIOLOGICAL GROWING SYSTEMS: HYPERBOLIC LIMITS TOWARDS MACROSCOPIC DESCRIPTION , 2007 .

[66]  Christina Surulescu,et al.  On a class of multiscale cancer cell migration models: Well-posedness in less regular function spaces , 2014 .

[67]  Philip K. Maini,et al.  A mathematical model for fibro-proliferative wound healing disorders , 1996 .

[68]  Michael Winkler,et al.  Boundedness in the Higher-Dimensional Parabolic-Parabolic Chemotaxis System with Logistic Source , 2010 .

[69]  Shigeru Kondo,et al.  Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation , 2010, Science.

[70]  Peter T. Cummings,et al.  Perturbation Expansion of Alt's Cell Balance Equations Reduces to Segel's One-Dimensional Equations for Shallow Chemoattractant Gradients , 1998, SIAM J. Appl. Math..

[71]  T. Senba,et al.  A quasi-linear parabolic system of chemotaxis , 2006 .

[72]  Hans G. Othmer,et al.  The Diffusion Limit of Transport Equations II: Chemotaxis Equations , 2002, SIAM J. Appl. Math..

[73]  Michael Winkler,et al.  Boundedness of solutions to parabolic–elliptic Keller–Segel systems with signal‐dependent sensitivity , 2015 .

[74]  Kevin J. Painter,et al.  CONVERGENCE OF A CANCER INVASION MODEL TO A LOGISTIC CHEMOTAXIS MODEL , 2013 .

[75]  N. Bellomo,et al.  Complexity and mathematical tools toward the modelling of multicellular growing systems , 2010, Math. Comput. Model..

[76]  Michael Winkler,et al.  Absence of collapse in a parabolic chemotaxis system with signal‐dependent sensitivity , 2010 .

[77]  Philippe Laurenccot,et al.  Finite time blow-up for a one-dimensional quasilinear parabolic–parabolic chemotaxis system , 2008, 0810.3369.

[78]  Youshan Tao,et al.  Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion , 2012 .

[79]  M. Winkler,et al.  Dominance of chemotaxis in a chemotaxis–haptotaxis model , 2014 .

[80]  R. Kowalczyk,et al.  Preventing blow-up in a chemotaxis model , 2005 .

[81]  Takashi Suzuki,et al.  Concentration lemma, Brezis-Merle type inequality, and a parabolic system of chemotaxis , 2001 .

[82]  Alexander Lorz,et al.  A coupled chemotaxis-fluid model: Global existence , 2011 .

[83]  Michael Winkler,et al.  Does a ‘volume‐filling effect’ always prevent chemotactic collapse? , 2010 .

[84]  C. Morales-Rodrigo,et al.  Global existence vs. blowup in a fully parabolic quasilinear 1D Keller–Segel system , 2012 .

[85]  Michael Winkler,et al.  How Far Can Chemotactic Cross-diffusion Enforce Exceeding Carrying Capacities? , 2014, J. Nonlinear Sci..

[86]  Axel Klar,et al.  COUPLING TRAFFIC FLOW NETWORKS TO PEDESTRIAN MOTION , 2014 .

[87]  M. Nowak,et al.  Evolutionary Dynamics of Biological Games , 2004, Science.

[88]  Pan Zheng,et al.  Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source , 2015 .

[89]  Dariusz Wrzosek,et al.  Volume Filling Effect in Modelling Chemotaxis , 2010 .

[90]  Benoît Perthame,et al.  Global Solutions of Some Chemotaxis and Angiogenesis Systems in High Space Dimensions , 2004 .

[91]  P. Biler,et al.  Blowup of solutions to generalized Keller–Segel model , 2008, 0812.4982.

[92]  J A Sherratt,et al.  Mathematical modelling of anisotropy in fibrous connective tissue. , 1999, Mathematical biosciences.

[93]  B. Perthame,et al.  Kinetic Models for Chemotaxis and their Drift-Diffusion Limits , 2004 .

[94]  Quoc Hung Phan,et al.  Global existence of solutions for a chemotaxis-type system arising in crime modeling , 2012, 1206.3724.

[95]  C. Villani,et al.  Optimal Transportation and Applications , 2003 .

[96]  Spatial and spatio-temporal patterns in a cell-haptotaxis model , 1989, Journal of mathematical biology.

[97]  Hans G. Othmer,et al.  The Diffusion Limit of Transport Equations Derived from Velocity-Jump Processes , 2000, SIAM J. Appl. Math..

[98]  H. Gajewski,et al.  Global Behaviour of a Reaction‐Diffusion System Modelling Chemotaxis , 1998 .

[99]  Benoît Perthame,et al.  PDE Models for Chemotactic Movements: Parabolic, Hyperbolic and Kinetic , 2004 .

[100]  Alexander Lorz,et al.  Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior , 2010 .

[101]  C. Schmeiser,et al.  Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms , 2005, Journal of mathematical biology.

[102]  Christian Schmeiser,et al.  Convergence of a Stochastic Particle Approximation for Measure Solutions of the 2D Keller-Segel System , 2011 .

[103]  Chuan Xue,et al.  Multiscale Models of Taxis-Driven Patterning in Bacterial Populations , 2009, SIAM J. Appl. Math..

[104]  Michael Winkler,et al.  Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction , 2011 .

[105]  Juan Soler,et al.  ON THE DIFFICULT INTERPLAY BETWEEN LIFE, "COMPLEXITY", AND MATHEMATICAL SCIENCES , 2013 .

[106]  H. Othmer,et al.  Models of dispersal in biological systems , 1988, Journal of mathematical biology.

[107]  I. Tuval,et al.  Bacterial swimming and oxygen transport near contact lines. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[108]  J. Vázquez The Porous Medium Equation , 2006 .

[109]  Kentarou Fujie,et al.  Boundedness in a fully parabolic chemotaxis system with singular sensitivity , 2015 .

[110]  P. Lions Résolution de problèmes elliptiques quasilinéaires , 1980 .

[111]  Abdelghani Bellouquid,et al.  From kinetic models of multicellular growing systems to macroscopic biological tissue models , 2011 .

[112]  D. Knopoff,et al.  FROM THE MODELING OF THE IMMUNE HALLMARKS OF CANCER TO A BLACK SWAN IN BIOLOGY , 2013 .

[113]  V. Caselles,et al.  A Strongly Degenerate Quasilinear Equation: the Parabolic Case , 2005 .

[114]  S. Luckhaus,et al.  Asymptotic profile with the optimal convergence rate for a parabolic equation of chemotaxis in super-critical cases , 2007 .

[115]  Miguel A. Herrero,et al.  Modelling vascular morphogenesis: current views on blood vessels development , 2009 .

[116]  Takashi Suzuki,et al.  Chemotactic collapse in a parabolic system of mathematical biology , 2000 .

[117]  Kevin J. Painter,et al.  Spatio-temporal chaos in a chemotaxis model , 2011 .

[118]  Johannes Lankeit,et al.  Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source , 2014, 1407.5085.

[119]  N. Mizoguchi,et al.  Nondegeneracy of blow-up points for the parabolic Keller–Segel system , 2014 .

[120]  Michael Winkler,et al.  Global weak solutions in a chemotaxis system with large singular sensitivity , 2011 .

[121]  Alexander Lorz,et al.  Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach , 2012, Journal of Fluid Mechanics.

[122]  Michael Winkler,et al.  Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system , 2011, 1112.4156.

[123]  L. Segel,et al.  Model for chemotaxis. , 1971, Journal of theoretical biology.

[124]  B. Perthame,et al.  Derivation of hyperbolic models for chemosensitive movement , 2005, Journal of mathematical biology.

[125]  Sachiko Ishida,et al.  Global existence of weak solutions to quasilinear degenerate Keller–Segel systems of parabolic–parabolic type , 2012 .

[126]  Qian Zhang,et al.  Global Well-Posedness for the Two-Dimensional Incompressible Chemotaxis-Navier-Stokes Equations , 2014, SIAM J. Math. Anal..

[127]  Michael Winkler,et al.  Chemotaxis with logistic source : Very weak global solutions and their boundedness properties , 2008 .

[128]  Christian Schmeiser,et al.  The two-dimensional Keller-Segel model after blow-up , 2009 .

[129]  Manuel del Pino,et al.  Collapsing steady states of the Keller–Segel system , 2006 .

[130]  Tong Li,et al.  Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis , 2011 .

[131]  Chunlai Mu,et al.  Boundedness in a parabolic-parabolic chemotaxis system with nonlinear diffusion , 2014 .

[132]  Mirosław Lachowicz,et al.  Lins Between Microscopic and Macroscopic Descriptions , 2008 .

[133]  Tohru Tsujikawa,et al.  Lower Estimate of the Attractor Dimension for a Chemotaxis Growth System , 2006 .

[134]  Michael Winkler,et al.  A Chemotaxis System with Logistic Source , 2007 .

[135]  Michael Winkler,et al.  Stabilization in a two-dimensional chemotaxis-Navier–Stokes system , 2014, 1410.5929.

[136]  Benoît Perthame,et al.  A chemotaxis model motivated by angiogenesis , 2003 .

[137]  Youshan Tao,et al.  Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity , 2011, 1106.5345.

[138]  Tohru Tsujikawa,et al.  Spatial pattern formation in a chemotaxis-diffusion-growth model , 2012 .

[139]  C. Schmeiser,et al.  MODEL HIERARCHIES FOR CELL AGGREGATION BY CHEMOTAXIS , 2006 .

[140]  Mingjun Wang,et al.  A Combined Chemotaxis-haptotaxis System: The Role of Logistic Source , 2009, SIAM J. Math. Anal..

[141]  Michael Winkler,et al.  Blow-up prevention by logistic sources in a parabolic–elliptic Keller–Segel system with singular sensitivity , 2014 .

[142]  Youshan Tao,et al.  Competing effects of attraction vs. repulsion in chemotaxis , 2013 .

[143]  Michael Winkler,et al.  A Chemotaxis-Haptotaxis Model: The Roles of Nonlinear Diffusion and Logistic Source , 2011, SIAM J. Math. Anal..

[144]  Dirk Horstmann,et al.  Boundedness vs. blow-up in a chemotaxis system , 2005 .

[145]  Mark Alber,et al.  Continuous macroscopic limit of a discrete stochastic model for interaction of living cells. , 2007, Physical review letters.

[146]  N. Bellomo,et al.  On the multiscale modeling of vehicular traffic: From kinetic to hydrodynamics , 2014 .

[147]  S. Luckhaus,et al.  Measure Valued Solutions of the 2D Keller–Segel System , 2010 .

[148]  Koichi Osaki,et al.  Global existence of solutions to a parabolicparabolic system for chemotaxis with weak degradation , 2011 .

[149]  J. Folkman,et al.  Clinical translation of angiogenesis inhibitors , 2002, Nature Reviews Cancer.

[150]  C. Stinner,et al.  New critical exponents in a fully parabolic quasilinear Keller–Segel system and applications to volume filling models , 2014, 1403.7129.

[151]  R. Goldstein,et al.  Self-concentration and large-scale coherence in bacterial dynamics. , 2004, Physical review letters.

[152]  Chuan Xue,et al.  Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms , 2015 .

[153]  Y. Tao,et al.  Boundedness and stabilization in a multi-dimensional chemotaxis—haptotaxis model , 2014, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[154]  Koichi Osaki,et al.  GLOBAL SOLUTIONS AND EXPONENTIAL ATTRACTORS OF A PARABOLIC-PARABOLIC SYSTEM FOR CHEMOTAXIS WITH SUBQUADRATIC DEGRADATION , 2013 .

[155]  Weak solutions for a bioconvection model related to Bacillus subtilis , 2012, 1203.4806.

[156]  B. Willis,et al.  Chemical aspects of mass spawning in corals. I. Sperm-attractant molecules in the eggs of the scleractinian coral Montipora digitata , 1994 .

[157]  Youshan Tao Global existence of classical solutions to a combined chemotaxis–haptotaxis model with logistic source , 2009 .

[158]  Mariya Ptashnyk,et al.  BOUNDEDNESS OF SOLUTIONS OF A HAPTOTAXIS MODEL , 2010 .

[159]  Youshan Tao,et al.  Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion , 2013 .

[160]  Michael Winkler,et al.  Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model , 2010 .

[161]  B. Perthame,et al.  Waves for an hyperbolic Keller-Segel model and branching instabilities , 2010 .

[162]  Dariusz Wrzosek,et al.  Long-time behaviour of solutions to a chemotaxis model with volume-filling effect , 2006, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[163]  L. Ryzhik,et al.  Biomixing by Chemotaxis and Enhancement of Biological Reactions , 2011, 1101.2440.

[164]  James Briscoe,et al.  Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism , 2007, Nature.

[165]  J. Carrillo,et al.  Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions , 2008, 0801.2310.

[166]  Nicola Bellomo,et al.  Modeling crowd dynamics from a complex system viewpoint , 2012 .

[167]  Michael Winkler,et al.  Global Regularity versus Infinite-Time Singularity Formation in a Chemotaxis Model with Volume-Filling Effect and Degenerate Diffusion , 2012, SIAM J. Math. Anal..

[168]  G. Pettet,et al.  A Mathematical Model of Integrin-mediated Haptotactic Cell Migration , 2006, Bulletin of mathematical biology.

[169]  Alexander Kurganov,et al.  ON A CHEMOTAXIS MODEL WITH SATURATED CHEMOTACTIC FLUX , 2012 .

[170]  Berardino D'Acunto,et al.  Qualitative analysis and simulations of a free boundary problem for multispecies biofilm models , 2011, Math. Comput. Model..

[171]  M. Chaplain,et al.  Continuous and discrete mathematical models of tumor-induced angiogenesis , 1998, Bulletin of mathematical biology.

[172]  Youshan Tao Global existence for a haptotaxis model of cancer invasion with tissue remodeling , 2011 .

[173]  M. Chaplain,et al.  Mathematical modelling of tumour invasion and metastasis , 2000 .

[174]  Isaac Klapper,et al.  Mathematical Description of Microbial Biofilms , 2010, SIAM Rev..

[175]  N. Mizoguchi Global existence for the Cauchy problem of the parabolic–parabolic Keller–Segel system on the plane , 2013 .

[176]  Benoit Perthame,et al.  Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces , 2008, Math. Comput. Model..

[177]  Yann Brenier,et al.  Optimal Transport, Convection, Magnetic Relaxation and Generalized Boussinesq Equations , 2008, J. Nonlinear Sci..

[178]  Chunlai Mu,et al.  On a quasilinear parabolic–elliptic chemotaxis system with logistic source , 2014 .

[179]  C. Patlak Random walk with persistence and external bias , 1953 .

[180]  Evelyn Fox Keller ASSESSING THE KELLER-SEGEL MODEL: HOW HAS IT FARED? , 1980 .

[181]  S. Roth Mathematics and biology: a Kantian view on the history of pattern formation theory , 2011, Development Genes and Evolution.

[182]  Xinru Cao,et al.  Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces , 2014, 1405.6666.

[183]  K. Kang,et al.  Global Existence and Temporal Decay in Keller-Segel Models Coupled to Fluid Equations , 2013, 1304.7536.

[184]  Sachiko Ishida,et al.  Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data , 2012 .