Random polytopes: Their definition, generation and aggregate properties

The definition of random polytope adopted in this paper restricts consideration to those probability measures satisfying two properties. First, the measure must induce an absolutely continuous distribution over the positions of the bounding hyperplanes of the random polytope; and second, it must result in every point in the space being equally as likely as any other point of lying within the random polytope. An efficient Monte Carlo method for their computer generation is presented together with analytical formulas characterizing their aggregate properties. In particular, it is shown that the expected number of extreme points for such random polytopes increases monotonically in the number of constraints to the limiting case of a polytope topologically equivalent to a hypercube. The implied upper bound of 2n wheren is the dimensionality of the space is significantly less than McMullen's attainable bound on the maximal number of vertices even for a moderate number of constraints.

[1]  L. Schläfli Theorie der vielfachen Kontinuität , 1901 .

[2]  H. Poincaré Calcul des Probabilités , 1912 .

[3]  R. Buck Partition of Space , 1943 .

[4]  Ludwig Schl fli Theorie der vielfachen Kontinuit??t , 1950 .

[5]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[6]  John Todd,et al.  Experimental arithmetic, high speed computing and mathematics , 1965 .

[7]  A. Rényi,et al.  über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .

[8]  R. E. Miles RANDOM POLYGONS DETERMINED BY RANDOM LINES IN A PLANE, II. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[9]  B. Efron The convex hull of a random set of points , 1965 .

[10]  T. Cover,et al.  Geometrical Probability and Random Points on a Hypersphere , 1967 .

[11]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[12]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[13]  D. Gale How to Solve Linear Inequalities , 1969 .

[14]  O. Bunke Feller, F.: An Introduction to Probability Theory and its Applications, Vol. II, John Wiley & Sons, Inc., New York‐London‐Sydney, 1966. XVIII + 626 S., 3 Abb., 2 Tab., Preis $ 12,00 , 1969 .

[15]  J. Wrench Table errata: The art of computer programming, Vol. 2: Seminumerical algorithms (Addison-Wesley, Reading, Mass., 1969) by Donald E. Knuth , 1970 .

[16]  V. Klee,et al.  HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .

[17]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .

[18]  H. Carnal Die konvexe Hülle von n rotationssymmetrisch verteilten Punkten , 1970 .

[19]  T. Liebling,et al.  On the number of iterations of the simplex method. , 1972 .

[20]  S. Zionts Some Empirical Tests of the Criss-Cross Method , 1972 .

[21]  K. Chung Review: William Feller, An Introduction to Probability Theory and its Applications 2 , 1973 .

[22]  Abraham Charnes,et al.  On generation of test problems for linear programming codes , 1974, CACM.

[23]  Richard M. Soland,et al.  Technical Note - Statistical Measures for Linear Functions on Polytopes , 1976, Oper. Res..

[24]  Brian K. Schmidt,et al.  The Probability that a Random Polytope is Bounded , 1977, Math. Oper. Res..

[25]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[26]  V. Chvátal,et al.  Notes on Bland’s pivoting rule , 1978 .

[27]  T. H. Mattheiss,et al.  Computational results on an algorithm for finding all vertices of a polytope , 1980, Math. Program..

[28]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[29]  W. B. van Dam,et al.  Randomly generated polytopes for testing mathematical programming algorithms , 1983, Math. Program..