Random polytopes: Their definition, generation and aggregate properties
暂无分享,去创建一个
[1] L. Schläfli. Theorie der vielfachen Kontinuität , 1901 .
[2] H. Poincaré. Calcul des Probabilités , 1912 .
[3] R. Buck. Partition of Space , 1943 .
[4] Ludwig Schl fli. Theorie der vielfachen Kontinuit??t , 1950 .
[5] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[6] John Todd,et al. Experimental arithmetic, high speed computing and mathematics , 1965 .
[7] A. Rényi,et al. über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .
[8] R. E. Miles. RANDOM POLYGONS DETERMINED BY RANDOM LINES IN A PLANE, II. , 1964, Proceedings of the National Academy of Sciences of the United States of America.
[9] B. Efron. The convex hull of a random set of points , 1965 .
[10] T. Cover,et al. Geometrical Probability and Random Points on a Hypersphere , 1967 .
[11] G. C. Shephard,et al. Convex Polytopes , 1969, The Mathematical Gazette.
[12] Donald Ervin Knuth,et al. The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .
[13] D. Gale. How to Solve Linear Inequalities , 1969 .
[14] O. Bunke. Feller, F.: An Introduction to Probability Theory and its Applications, Vol. II, John Wiley & Sons, Inc., New York‐London‐Sydney, 1966. XVIII + 626 S., 3 Abb., 2 Tab., Preis $ 12,00 , 1969 .
[15] J. Wrench. Table errata: The art of computer programming, Vol. 2: Seminumerical algorithms (Addison-Wesley, Reading, Mass., 1969) by Donald E. Knuth , 1970 .
[16] V. Klee,et al. HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .
[17] P. McMullen. The maximum numbers of faces of a convex polytope , 1970 .
[18] H. Carnal. Die konvexe Hülle von n rotationssymmetrisch verteilten Punkten , 1970 .
[19] T. Liebling,et al. On the number of iterations of the simplex method. , 1972 .
[20] S. Zionts. Some Empirical Tests of the Criss-Cross Method , 1972 .
[21] K. Chung. Review: William Feller, An Introduction to Probability Theory and its Applications 2 , 1973 .
[22] Abraham Charnes,et al. On generation of test problems for linear programming codes , 1974, CACM.
[23] Richard M. Soland,et al. Technical Note - Statistical Measures for Linear Functions on Polytopes , 1976, Oper. Res..
[24] Brian K. Schmidt,et al. The Probability that a Random Polytope is Bounded , 1977, Math. Oper. Res..
[25] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[26] V. Chvátal,et al. Notes on Bland’s pivoting rule , 1978 .
[27] T. H. Mattheiss,et al. Computational results on an algorithm for finding all vertices of a polytope , 1980, Math. Program..
[28] Donald E. Knuth,et al. The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .
[29] W. B. van Dam,et al. Randomly generated polytopes for testing mathematical programming algorithms , 1983, Math. Program..