Message encoding and retrieval for spread and cyclic orbit codes

Spread codes and cyclic orbit codes are special families of constant dimension subspace codes. These codes have been well-studied for their error correction capability, transmission rate and decoding methods, but the question of how to encode and retrieve messages has not been investigated. In this work we show how a message set of consecutive integers can be encoded and retrieved for these two code families.

[1]  Thomas M. Cover,et al.  Enumerative source encoding , 1973, IEEE Trans. Inf. Theory.

[2]  Sascha Kurz,et al.  Construction of Large Constant Dimension Codes with a Prescribed Minimum Distance , 2008, MMICS.

[3]  Joachim von zur Gathen,et al.  Efficient and optimal exponentiation in finite fields , 1991, computational complexity.

[4]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[5]  Martin Bossert,et al.  One family of algebraic codes for network coding , 2009, 2009 IEEE International Symposium on Information Theory.

[6]  Joachim Rosenthal,et al.  On conjugacy classes of subgroups of the general linear group and cyclic orbit codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[7]  Ernst M. Gabidulin,et al.  Multicomponent Network Coding , 2011 .

[8]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[9]  Alberto Ravagnani,et al.  Partial spreads in random network coding , 2014, Finite Fields Their Appl..

[10]  Joachim Rosenthal,et al.  Orbit codes — A new concept in the area of network coding , 2010, 2010 IEEE Information Theory Workshop.

[11]  Frank R. Kschischang,et al.  A Rank-Metric Approach to Error Control in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[12]  Eli Ben-Sasson,et al.  Subspace Polynomials and Cyclic Subspace Codes , 2014, IEEE Transactions on Information Theory.

[13]  A. Trautmann,et al.  Constructions, decoding and automorphisms of subspace codes , 2013 .

[14]  Joachim Rosenthal,et al.  Cyclic Orbit Codes , 2011, IEEE Transactions on Information Theory.

[15]  Joachim Rosenthal,et al.  New Improvements on the Echelon-Ferrers Construction , 2010, ArXiv.

[16]  Alexander Vardy,et al.  Error-correcting codes in projective space , 2008, 2008 IEEE International Symposium on Information Theory.

[17]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2008, IEEE Trans. Inf. Theory.

[18]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: List of Symbols , 1986 .

[19]  Anna-Lena Trautmann Message encoding for spread and orbit codes , 2014, ISIT 2014.

[20]  P. Tichý Constructions , 1986, Philosophy of Science.

[21]  Guglielmo Lunardon,et al.  Desarguesian spreads , 2011 .

[22]  Natalia Silberstein,et al.  Error-Correcting Codes in Projective Spaces Via Rank-Metric Codes and Ferrers Diagrams , 2008, IEEE Transactions on Information Theory.

[23]  Andrew M. Odlyzko,et al.  Discrete Logarithms in Finite Fields and Their Cryptographic Significance , 1985, EUROCRYPT.

[24]  Adalbert Kerber,et al.  Applied finite group actions , 1999 .

[25]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[26]  Joachim Rosenthal,et al.  An algebraic approach for decoding spread codes , 2012, Adv. Math. Commun..

[27]  Anna-Lena Horlemann-Trautmann,et al.  Spread decoding in extension fields , 2011, Finite Fields Their Appl..

[28]  Thomas Feulner Canonical Forms and Automorphisms in the Projective Space , 2013, ArXiv.

[29]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[30]  W. Marsden I and J , 2012 .

[31]  Natalia Silberstein,et al.  Subspace Codes Based on Graph Matchings, Ferrers Diagrams, and Pending Blocks , 2014, IEEE Transactions on Information Theory.

[32]  P. Delsarte AN ALGEBRAIC APPROACH TO THE ASSOCIATION SCHEMES OF CODING THEORY , 2011 .

[33]  Vitaly Skachek,et al.  Recursive Code Construction for Random Networks , 2008, IEEE Transactions on Information Theory.

[34]  Joachim Rosenthal,et al.  A complete characterization of irreducible cyclic orbit codes and their Plücker embedding , 2011, Des. Codes Cryptogr..

[35]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[36]  Maximilien Gadouleau,et al.  Constant-Rank Codes and Their Connection to Constant-Dimension Codes , 2008, IEEE Transactions on Information Theory.

[37]  Anna-Lena Trautmann,et al.  Isometry and automorphisms of constant dimension codes , 2012, 1205.5465.

[38]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[39]  Joachim Rosenthal,et al.  Spread codes and spread decoding in network coding , 2008, 2008 IEEE International Symposium on Information Theory.

[40]  Moshe Schwartz,et al.  Gray Codes and Enumerative Coding for Vector Spaces , 2013, IEEE Transactions on Information Theory.

[41]  Heide Gluesing-Luerssen,et al.  Cyclic orbit codes and stabilizer subfields , 2015, Adv. Math. Commun..

[42]  Natalia Silberstein,et al.  Enumerative Coding for Grassmannian Space , 2009, IEEE Transactions on Information Theory.

[43]  Natalia Silberstein,et al.  Codes and designs related to lifted MRD codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.