Letter to the Editor Congruent Voronoi tessellations from equiangular lines

It is proven that the Voronoi tessellations of the real projective space generated by equiangular lines are congruent. Two implications of this result are mentioned—an equiangular set of lines forms the best N -point representation of an isotropically distributed one-dimensional subspace in terms of mutual information and a subspace quantizer defined by equiangular lines provides equal partial distortion.

[1]  Mátyás A. Sustik,et al.  On the existence of equiangular tight frames , 2007 .

[2]  G. David Forney,et al.  Geometrically uniform codes , 1991, IEEE Trans. Inf. Theory.

[3]  Dominique de Caen,et al.  Large Equiangular Sets of Lines in Euclidean Space , 2000, Electron. J. Comb..

[4]  Y. Chikuse Statistics on special manifolds , 2003 .

[5]  A. James Normal Multivariate Analysis and the Orthogonal Group , 1954 .

[6]  Qiang Du,et al.  Constrained Centroidal Voronoi Tessellations for Surfaces , 2002, SIAM J. Sci. Comput..

[7]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[8]  Allen Gersho,et al.  Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.

[9]  D. Slepian Group codes for the Gaussian channel , 1968 .

[10]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[11]  Yonina C. Eldar Least-squares inner product shaping , 2002, Linear Algebra and its Applications.

[12]  Thomas Strohmer,et al.  GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.

[13]  Robert W. Heath,et al.  Designing structured tight frames via an alternating projection method , 2005, IEEE Transactions on Information Theory.

[14]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[15]  Yonina C. Eldar,et al.  Geometrically uniform frames , 2001, IEEE Trans. Inf. Theory.