Kink correlations, domain-size distribution, and emptiness formation probability after a Kibble-Zurek quench in the quantum Ising chain

Linear quench of the transverse field drives the quantum Ising chain across a quantum critical point from the paramagnetic to the ferromagnetic phase. We focus on normal and anomalous quadratic correlators between fermionic kink creation and annihilation operators. They depend not only on the Kibble-Zurek (KZ) correlation length but also on a dephasing length scale, which differs from the KZ length by a logarithmic correction. Additional slowing down of the ramp in the ferromagnetic phase further increases the dephasing length and suppresses the anomalous correlator. The quadratic correlators enter Pfaffians that yield experimentally relevant kink correlation functions, the probability distribution of ferromagnetic domain sizes, and, closely related, emptiness formation probability. The latter takes the form of a Pfaffian of a block Toeplitz matrix that allows for some analytic asymptotes. Finally, we obtain further insight into the structure of the state at the end of the ramp by interpreting it as a paired state of fermionic kinks characterized by its pair wave function. All those quantities are sensitive to quantum coherence between eigenstates with different numbers of kinks, thus making them a convenient probe of the quantumness of a quantum simulator platform.

[1]  Peng-Bo Li,et al.  Interferometry based on quantum Kibble-Zurek mechanism , 2022, 2204.01380.

[2]  Bartłomiej Gardas,et al.  Assessing the performance of quantum annealing with nonlinear driving , 2022, Physical Review A.

[3]  Daniel A. Lidar,et al.  Coherent quantum annealing in a programmable 2,000 qubit Ising chain , 2022, Nature Physics.

[4]  W. Zurek,et al.  Coherent Many-Body Oscillations Induced by a Superposition of Broken Symmetry States in the Wake of a Quantum Phase Transition , 2022, 2201.12540.

[5]  R. Nowak,et al.  Quantum Kibble-Zurek mechanism: Kink correlations after a quench in the quantum Ising chain , 2021, Physical Review B.

[6]  F. Ares,et al.  Exact full counting statistics for the staggered magnetization and the domain walls in the XY spin chain. , 2020, Physical review. E.

[7]  R. Moessner,et al.  Dynamics and correlations at a quantum phase transition beyond Kibble-Zurek , 2020, Physical Review B.

[8]  G. Volovik,et al.  Suppressing the Kibble-Zurek Mechanism by a Symmetry-Violating Bias. , 2019, Physical review letters.

[9]  K. H'ods'agi,et al.  Kibble–Zurek mechanism in the Ising Field Theory , 2020, SciPost Physics.

[10]  B. Damski,et al.  Locating quantum critical points with Kibble-Zurek quenches , 2020, 2007.04991.

[11]  F. Dalfovo,et al.  Kibble-Zurek dynamics in a trapped ultracold Bose gas , 2020, Physical Review Research.

[12]  D. Rossini,et al.  Dynamic Kibble-Zurek scaling framework for open dissipative many-body systems crossing quantum transitions , 2020, 2003.07604.

[13]  Daniel A. Lidar,et al.  Probing the universality of topological defect formation in a quantum annealer: Kibble-Zurek mechanism and beyond , 2020, 2001.11637.

[14]  W. Zurek,et al.  Sonic horizons and causality in phase transition dynamics , 2019, Physical Review B.

[15]  A. Sandvik,et al.  Scaling and Diabatic Effects in Quantum Annealing with a D-Wave Device. , 2019, Physical review letters.

[16]  B. Damski,et al.  Dynamics of longitudinal magnetization in transverse-field quantum Ising model: from symmetry-breaking gap to Kibble–Zurek mechanism , 2019, Journal of Statistical Mechanics: Theory and Experiment.

[17]  F. Ares,et al.  Emptiness formation probability and Painlevé V equation in the XY spin chain , 2019, Journal of Statistical Mechanics: Theory and Experiment.

[18]  Dr.B.Revathy Bala,et al.  Adiabatic dynamics of quasiperiodic transverse Ising model , 2019, Journal of Statistical Mechanics: Theory and Experiment.

[19]  S. Diehl,et al.  Activating critical exponent spectra with a slow drive , 2019, Physical Review Research.

[20]  W. Zurek,et al.  Symmetry Breaking Bias and the Dynamics of a Quantum Phase Transition. , 2019, Physical review letters.

[21]  M. Plenio,et al.  Quantum Kibble-Zurek physics in long-range transverse-field Ising models , 2019, Physical Review A.

[22]  M. Rams,et al.  Kibble-Zurek mechanism with a single particle: Dynamics of the localization-delocalization transition in the Aubry-André model , 2018, Physical Review B.

[23]  Sylvain Schwartz,et al.  Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator , 2018, Nature.

[24]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[25]  A. Campo,et al.  Universal Statistics of Topological Defects Formed in a Quantum Phase Transition. , 2018, Physical review letters.

[26]  F. Dalfovo,et al.  Dynamical equilibration across a quenched phase transition in a trapped quantum gas , 2017, Communications Physics.

[27]  Wojciech H. Zurek,et al.  Defects in Quantum Computers , 2017, Scientific Reports.

[28]  Anirban Dutta,et al.  Probing the role of long-range interactions in the dynamics of a long-range Kitaev chain , 2017, 1705.03770.

[29]  M. L. Wall,et al.  Critical phenomena and Kibble–Zurek scaling in the long-range quantum Ising chain , 2016, 1612.07437.

[30]  Logan W. Clark,et al.  Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition , 2016, Science.

[31]  H. M. Bharath,et al.  Quantum Kibble-Zurek Mechanism in a Spin-1 Bose-Einstein Condensate. , 2015, Physical review letters.

[32]  D. Ceperley,et al.  Probing the Bose glass–superfluid transition using quantum quenches of disorder , 2015, Nature Physics.

[33]  J. G. Esteve,et al.  Entanglement in fermionic chains with finite range coupling and broken symmetries , 2015, 1506.06665.

[34]  A. Dutta,et al.  Quenches and dynamical phase transitions in a non-integrable quantum Ising model , 2015, 1506.00477.

[35]  V. Bagnato,et al.  Realization of inverse Kibble–Zurek scenario with trapped Bose gases , 2015, 1503.09001.

[36]  G. Maret,et al.  Kibble–Zurek mechanism in colloidal monolayers , 2015, Proceedings of the National Academy of Sciences.

[37]  J. Dalibard,et al.  Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas , 2014, Nature Communications.

[38]  Alexander L. Gaunt,et al.  Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas , 2014, Science.

[39]  W. Zurek,et al.  Universal far-from-equilibrium dynamics of a holographic superconductor , 2014, Nature Communications.

[40]  Immanuel Bloch,et al.  Emergence of coherence and the dynamics of quantum phase transitions , 2014, Proceedings of the National Academy of Sciences.

[41]  S. Cheong,et al.  Topological defects as relics of emergent continuous symmetry and Higgs condensation of disorder in ferroelectrics , 2014, Nature Physics.

[42]  S. Starr,et al.  Emptiness Formation Probability , 2014, 1410.3928.

[43]  P. Chesler,et al.  Defect formation beyond Kibble-Zurek mechanism and holography , 2014, 1407.1862.

[44]  F. Dalfovo,et al.  Observation of solitonic vortices in Bose-Einstein condensates. , 2014, Physical review letters.

[45]  Wojciech H. Zurek,et al.  Universality of Phase Transition Dynamics: Topological Defects from Symmetry Breaking , 2013, 1310.1600.

[46]  Jean-Marie St'ephan Emptiness formation probability, Toeplitz determinants, and conformal field theory , 2013, 1303.5499.

[47]  M. Plenio,et al.  Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals , 2013, Nature Communications.

[48]  W. Zurek,et al.  Topological relics of symmetry breaking: winding numbers and scaling tilts from random vortex–antivortex pairs , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[49]  J. Rossnagel,et al.  Observation of the Kibble–Zurek scaling law for defect formation in ion crystals , 2013, Nature Communications.

[50]  T. Schaetz,et al.  Trapping of topological-structural defects in Coulomb crystals. , 2012, Physical review letters.

[51]  M. Fiebig,et al.  Scaling Behavior and Beyond Equilibrium in the Hexagonal Manganites , 2012 .

[52]  P. Deift,et al.  Toeplitz Matrices and Toeplitz Determinants under the Impetus of the Ising Model: Some History and Some Recent Results , 2012, 1207.4990.

[53]  S. Cheong,et al.  Direct observation of the proliferation of ferroelectric loop domains and vortex-antivortex pairs. , 2012, Physical review letters.

[54]  W. Zurek,et al.  Winding up superfluid in a torus via Bose Einstein condensation , 2011, Scientific Reports.

[55]  F. Brennecke,et al.  Exploring symmetry breaking at the Dicke quantum phase transition. , 2011, Physical review letters.

[56]  B. Demarco,et al.  Quantum quench of an atomic Mott insulator. , 2011, Physical review letters.

[57]  K. Rzążewski,et al.  Solitons as the early stage of quasicondensate formation during evaporative cooling. , 2011, Physical review letters.

[58]  Alessandro Silva,et al.  Colloquium: Nonequilibrium dynamics of closed interacting quantum systems , 2010, 1007.5331.

[59]  A. Campo,et al.  Spontaneous nucleation of structural defects in inhomogeneous ion chains , 2010, 1006.5937.

[60]  G. Koren,et al.  Evidence for long-range correlations within arrays of spontaneously created magnetic vortices in a Nb thin-film superconductor. , 2010, Physical review letters.

[61]  R. Schützhold,et al.  System size scaling of topological defect creation in a second-order dynamical quantum phase transition , 2010, 1005.2649.

[62]  Jacek Dziarmaga,et al.  Dynamics of a quantum phase transition and relaxation to a steady state , 2009, 0912.4034.

[63]  Wojciech H. Zurek,et al.  Critical dynamics of decoherence , 2009, 0911.5729.

[64]  A. Polkovnikov,et al.  Quench dynamics near a quantum critical point , 2009, 0909.5181.

[65]  Bogdan Damski,et al.  Soliton creation during a Bose-Einstein condensation. , 2009, Physical review letters.

[66]  A. Green,et al.  Dynamics after a sweep through a quantum critical point. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  R. Monaco,et al.  Spontaneous fluxoid formation in superconducting loops , 2009, 0907.2505.

[68]  W. Zurek,et al.  Winding up of the wave-function phase by an insulator-to-superfluid transition in a ring of coupled Bose-Einstein condensates. , 2008, Physical review letters.

[69]  Brian P. Anderson,et al.  Spontaneous vortices in the formation of Bose–Einstein condensates , 2008, Nature.

[70]  K. Kozlowski Truncated Wiener-Hopf operators with Fisher Hartwig singularities , 2008, 0805.3902.

[71]  K. Sengupta,et al.  Defect production in nonlinear quench across a quantum critical point. , 2008, Physical review letters.

[72]  K. Sengupta,et al.  Exact results for quench dynamics and defect production in a two-dimensional model. , 2007, Physical review letters.

[73]  A. Polkovnikov,et al.  Breakdown of the adiabatic limit in low-dimensional gapless systems , 2007, 0803.3967.

[74]  T. Kibble Phase-transition dynamics in the lab and the universe , 2007 .

[75]  Masahito Ueda,et al.  Kibble-Zurek mechanism in a quenched ferromagnetic Bose-Einstein condensate , 2007, 0704.1377.

[76]  Michael E. Fisher,et al.  Toeplitz Determinants: Some Applications, Theorems, and Conjectures , 2007 .

[77]  W. Zurek,et al.  Entropy of entanglement and correlations induced by a quench: Dynamics of a quantum phase transition in the quantum Ising model , 2007, cond-mat/0701768.

[78]  U. R. Fischer,et al.  Vortex quantum creation and winding number scaling in a quenched spinor Bose gas. , 2006, Physical review letters.

[79]  W. Zurek,et al.  Dynamics of the Bose-Hubbard model: Transition from a Mott insulator to a superfluid , 2006, cond-mat/0601650.

[80]  D. Stamper-Kurn,et al.  Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate , 2006, Nature.

[81]  U. R. Fischer,et al.  Sweeping from the superfluid to the Mott phase in the Bose-Hubbard model. , 2006, Physical review letters.

[82]  F. Franchini,et al.  Asymptotics of Toeplitz determinants and the emptiness formation probability for the XY spin chain , 2005, cond-mat/0502015.

[83]  Jacek Dziarmaga,et al.  Dynamics of a quantum phase transition: exact solution of the quantum Ising model. , 2005, Physical review letters.

[84]  P. Zoller,et al.  Dynamics of a quantum phase transition. , 2005, Physical review letters.

[85]  B. Damski,et al.  The simplest quantum model supporting the Kibble-Zurek mechanism of topological defect production: Landau-Zener transitions from a new perspective. , 2004, Physical review letters.

[86]  A. Polkovnikov Universal adiabatic dynamics in the vicinity of a quantum critical point , 2003, cond-mat/0312144.

[87]  G. Koren,et al.  Observation of magnetic flux generated spontaneously during a rapid quench of superconducting films. , 2003, Physical review letters.

[88]  R. Monaco,et al.  Zurek-Kibble domain structures: the dynamics of spontaneous vortex formation in annular Josephson tunnel junctions. , 2001, Physical review letters.

[89]  Minoru Takahashi,et al.  Emptiness Formation Probability for the One-Dimensional Isotropic XY Model , 2001, cond-mat/0106062.

[90]  L. Bettencourt,et al.  Shards of Broken Symmetry: Topological Defects as Traces of the Phase Transition Dynamics , 2010, 1003.2228.

[91]  Carmi,et al.  Observation of spontaneous flux generation in a multi-josephson-junction loop , 2000, Physical review letters.

[92]  L. Bettencourt,et al.  Ginzburg regime and its effects on topological defect formation , 2000, hep-ph/0001205.

[93]  L. Bettencourt,et al.  Vortex string formation in a 3D U(1) temperature quench , 1998, hep-ph/9811426.

[94]  P. Laguna,et al.  SYMMETRY BREAKING WITH A SLANT : TOPOLOGICAL DEFECTS AFTER AN INHOMOGENEOUS QUENCH , 1998, cond-mat/9810396.

[95]  W. Zurek,et al.  Vortex formation in two dimensions: when symmetry breaks, how big are the pieces? , 1998, hep-ph/9801223.

[96]  B. Silbermann,et al.  Toeplitz Determinants with One Fisher–Hartwig Singularity , 1997 .

[97]  P. Laguna,et al.  Density of Kinks after a Quench: When Symmetry Breaks, How Big are the Pieces? , 1996, gr-qc/9607041.

[98]  Wen Xu,et al.  Vortex formation in neutron-irradiated superfluid 3He as an analogue of cosmological defect formation , 1996, Nature.

[99]  G. R. Pickett,et al.  Laboratory simulation of cosmic string formation in the early Universe using superfluid 3He , 1996, Nature.

[100]  W. Zurek Cosmological experiments in condensed matter systems , 1996, cond-mat/9607135.

[101]  Kent E. Morrison,et al.  The Fisher-Hartwig conjecture and Toeplitz eigenvalues , 1994 .

[102]  M. Bowick,et al.  The Cosmological Kibble Mechanism in the Laboratory: String Formation in Liquid Crystals , 1992, Science.

[103]  W. Zurek Cosmic strings in laboratory superfluids and the topological remnants of other phase transitions , 1993 .

[104]  R. Durrer,et al.  Cosmology in the Laboratory: Defect Dynamics in Liquid Crystals , 1991, Science.

[105]  W. H. Zurek,et al.  Cosmological experiments in superfluid helium? , 1985, Nature.

[106]  T. Kibble,et al.  Some Implications of a Cosmological Phase Transition , 1980 .

[107]  T W B Kibble,et al.  Topology of cosmic domains and strings , 1976 .

[108]  H. Widom Asymptotic behavior of block Toeplitz matrices and determinants. II , 1974 .

[109]  H. Widom Toeplitz Determinants with Singular Generating Functions , 1973 .