Explicit construction of quadratic lyapunov functions for the small gain, positivity, circle, and popov theorems and their application to robust stability. part II: Discrete-time theory

The purpose of this paper is to construct Lyapunov functions to prove the key fundamental results of linear system theory, namely, the small gain (bounded real), positivity (positive real), circle, and Popov theorems. For each result a suitable Riccati-like matrix equation is used to explicitly construct a Lyapunov function that guarantees asymptotic stability of the feedback interconnection of a linear time-invariant system and a memoryless nonlinearity. Lyapunov functions for the small gain and positivity results are also constructed for the interconnection of two transfer functions. A multivariable version of the circle criterion, which yields the bounded real and positive real results as limiting cases, is also derived. For a multivariable extension of the Popov criterion, a Lure-Postnikov Lyapunov function involving both a quadratic term and an integral of the nonlinearity, is constructed. Each result is specialized to the case of linear uncertainty for the problem of robust stability. In the case of the Popov criterion, the Lyapunov function is a parameter-dependent quadratic Lyapunov function.

[1]  R. E. Kalman,et al.  Control System Analysis and Design Via the “Second Method” of Lyapunov: II—Discrete-Time Systems , 1960 .

[2]  S. Kodama,et al.  Stability of nonlinear sampled-data control systems , 1962 .

[3]  S. Kodama,et al.  Stability of a class of discrete control systems containing a nonlinear gain element , 1962 .

[4]  J. Pearson A note on the existence of Liapunov functions for a class of discrete-time systems , 1963 .

[5]  R. Kálmán LYAPUNOV FUNCTIONS FOR THE PROBLEM OF LUR'E IN AUTOMATIC CONTROL. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[6]  G. P. Szegö,et al.  ON THE ABSOLUTE STABILITY OF SAMPLED-DATA CONTROL SYSTEMS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J. Bongiorno,et al.  An extension of the Nyquist-Barkhausen stability criterion to linear lumped-parameter systems with time-varying elements , 1963 .

[8]  I. W. Sandberg On the properties of some systems that distort signals — II , 1963 .

[9]  Jr. J.J. Bongiorno Real-frequency stability criteria for linear time-varying systems , 1964 .

[10]  Ya. Z. Tsypkin,et al.  A Criterion for Absolute Stability of Automatic Pulse Systems with Monotonic Characteristics of the Nonlinear Element , 1964 .

[11]  I. Sandberg A frequency-domain condition for the stability of feedback systems containing a single time-varying nonlinear element , 1964 .

[12]  J. E. Gibson,et al.  On the Asymptotic Stability of a Class of Saturating Sampled-Data Systems , 1964, IEEE Transactions on Applications and Industry.

[13]  J. Pearson,et al.  On the absolute stability of sampled-data systems: The "Indirect control" case , 1964 .

[14]  J. P. Lasalle,et al.  Absolute Stability of Regulator Systems , 1964 .

[15]  E. I. Jury,et al.  On the absolute stability of nonlinear sample-data systems , 1964 .

[16]  E. I. Jury,et al.  On the stability of a certain class of nonlinear sampled-data systems , 1964 .

[17]  K. Meyer On the Existence of Lyapunov Function for the Problem of Lur’e , 1965 .

[18]  K. Meyer,et al.  LIAPUNOV FUNCTIONS FOR THE PROBLEM OF LUR'E. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S. Lefschetz Stability of nonlinear control systems , 1966 .

[20]  J. Willems,et al.  Frequency domain stability criteria--Part II , 1965 .

[21]  I. W. Sandberg,et al.  On the boundedness of solutions of nonlinear integral equations , 1965 .

[22]  Charles A. Desoer,et al.  A generalization of the Popov criterion , 1965 .

[23]  G. Zames On the input-output stability of time-varying nonlinear feedback systems--Part II: Conditions involving circles in the frequency plane and sector nonlinearities , 1966 .

[24]  G. Zames On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity , 1966 .

[25]  Brian D. O. Anderson,et al.  Algebraic description of bounded real matrixes , 1966 .

[26]  K. Narendra,et al.  Stability of a Class of Differential Equations with a Single Monotone Nonlinearity , 1966 .

[27]  S. Wu,et al.  A circle stability criterion for a class of discrete systems , 1967, IEEE Transactions on Automatic Control.

[28]  B. Anderson A SYSTEM THEORY CRITERION FOR POSITIVE REAL MATRICES , 1967 .

[29]  Roger W. Brockett,et al.  Frequency-domain instability criteria for time-varying and nonlinear systems , 1967 .

[30]  R. O'Shea,et al.  A frequency-time domain stability criterion for sampled-data systems , 1967, IEEE Transactions on Automatic Control.

[31]  A. Bergen,et al.  The parabola test for absolute stability , 1967 .

[32]  B. Anderson,et al.  A generalization of the Popov criterion , 1968 .

[33]  Kumpati S. Narendra,et al.  Stability Analysis of Nonlinear and Time-Varying Discrete Systems , 1968 .

[34]  P. Falb,et al.  Stability Conditions for Systems with Monotone and Slope-Restricted Nonlinearities , 1968 .

[35]  Jan C. Willems,et al.  Stability, Instability, Invertibility and Causality , 1969 .

[36]  An extended frequency-domain stability criterion for a class of sampled-data systems , 1970 .

[37]  G. P. Szegö,et al.  Stability theory of dynamical systems , 1970 .

[38]  J. Willems Least squares stationary optimal control and the algebraic Riccati equation , 1971 .

[39]  Jan C. Willems,et al.  The Analysis of Feedback Systems , 1971 .

[40]  Dragoslav D. Šiljak,et al.  Exponential absolute stability of discrete systems , 1971 .

[41]  J. Willems The Generation of Lyapunov Functions for Input-Output Stable Systems , 1971 .

[42]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[43]  Brian D. O. Anderson,et al.  The small-gain theorem, the passivity theorem and their equivalence , 1972 .

[44]  D. Siljak Algebraic criteria for positive realness relative to the unit circle , 1973 .

[45]  Vasile Mihai Popov,et al.  Hyperstability of Control Systems , 1973 .

[46]  K. Narendra,et al.  Frequency Domain Criteria for Absolute Stability , 1973 .

[47]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[48]  Circle Criteria for Stability in Hilbert Space , 1975 .

[49]  B. Molinari The stabilizing solution of the discrete algebraic riccati equation , 1975 .

[50]  P. Moylan,et al.  The stability of nonlinear dissipative systems , 1976 .

[51]  J. Willems Mechanisms for the stability and instability in feedback systems , 1976, Proceedings of the IEEE.

[52]  David J. Hill,et al.  Stability results for nonlinear feedback systems , 1977, Autom..

[53]  Ljubomir T. Grujić,et al.  Solutions for the Lurie-Postnikov and Aizerman problems , 1978 .

[54]  J. Willems,et al.  Synthesis of state feedback control laws with a specified gain and phase margin , 1980 .

[55]  P. Moylan,et al.  Dissipative Dynamical Systems: Basic Input-Output and State Properties , 1980 .

[56]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[57]  A. Mees,et al.  The Popov criterion for multiple-loop feedback systems , 1980 .

[58]  R. P. Iwens,et al.  Stability of Large Space Structure Control Systems Using Positivity Concepts , 1981 .

[59]  Lj. T. Grujlć,et al.  Lyapunov-like solutions for stability problems of the most general stationary Lurie-Postnikov systems , 1981 .

[60]  E. Noldus Design of robust state feedback laws , 1982 .

[61]  David J. Hill,et al.  General Instability Results for Interconnected Systems , 1983 .

[62]  A. I. Barkin,et al.  Method of power transformations for analysis of stability of nonlinear control systems , 1983 .

[63]  P. Vaidyanathan The discrete-time bounded-real lemma in digital filtering , 1985 .

[64]  Ian R. Petersen A Riccati equation approach to the design of stabilizing controllers and observers for a class of uncertain linear systems , 1985 .

[65]  Tsu-Tian Lee,et al.  GAIN AND PHASE MARGINS FOR DISCRETE-TIME-SYSTEMS , 1986 .

[66]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[67]  Ljubomir T. Grujic,et al.  On robustness of Lurie systems with multiple non-linearities , 1987, Autom..

[68]  J. Wen Time domain and frequency domain conditions for strict positive realness , 1988 .

[69]  On Discrete Inner-Outer and Spectral Factorizations , 1988 .

[70]  P. Caines Linear Stochastic Systems , 1988 .

[71]  D. Bernstein,et al.  The optimal projection equations with Petersen-Hollot bounds: robust stability and performance via fixed-order dynamic compensation for systems with structured real-valued parameter uncertainty , 1988 .

[72]  Panajotis Agathoklis,et al.  The discrete-time strictly bounded-real lemma and the computation of positive definite solutions to the 2-D Lyapunov equation , 1989 .

[73]  A. Madiwale Design of LQG/H∞ dynamic compensators for time varying non-linear feedback systems: circle criterion and guaranteed gain and phase margins , 1989, 1989 American Control Conference.

[74]  Dennis S. Bernstein,et al.  Robust stability and performance via fixed-order dynamic compensation with guaranteed cost bounds , 1990, Math. Control. Signals Syst..

[75]  D. Bernstein,et al.  Robust stability and performance analysis for state-space systems via quadratic Lyapunov bounds , 1990 .

[76]  J. S. Gibson,et al.  A first-order Lyapunov robustness method for linear systems with uncertain parameters , 1990 .

[77]  S. Joshi,et al.  Strictly positive real transfer functions revisited , 1990 .

[78]  P. Khargonekar,et al.  Robust stabilization of uncertain linear systems: quadratic stabilizability and H/sup infinity / control theory , 1990 .

[79]  D. S. Bernstein,et al.  Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle and Popov theorems and their application to robust stability , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[80]  D. Bernstein,et al.  Robust stabilization with positive real uncertainty: beyond the small gain theory , 1991 .

[81]  D. Bernstein,et al.  Parameter-dependent Lyapunov functions, constant real parameter uncertainty, and the Popov criterion in robust analysis and synthesis. 2 , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[82]  Dennis S. Bernstein,et al.  Parameter-Dependent Lyapunov Functions and the Discrete-Time Popov Criterion for Robust Analysis and Synthesis , 1992, 1992 American Control Conference.

[83]  D. Bernstein,et al.  SMALL GAIN VERSUS POSITIVE REAL MODELING OF REAL PARAMETER UNCERTAINTY , 1992 .

[84]  D. Bernstein,et al.  Robust stability and performance via fixed-order dynamic compensation: the discrete-time case , 1993, IEEE Trans. Autom. Control..

[85]  Dennis S. Bernstein,et al.  Robust stability analysis using the small gain, circle, positivity, and Popov theorems: a comparative study , 1993, IEEE Trans. Control. Syst. Technol..