The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications.

Hydrogen production is a vital metabolic process for many anaerobic organisms, and the enzyme responsible, hydrogenase, has been studied since the 1930s. A novel subfamily with unique properties was recently recognized, represented by the 14-subunit membrane-bound [NiFe] hydrogenase from the archaeon Pyrococcus furiosus. This so-called energy-converting hydrogenase links the thermodynamically favorable oxidation of ferredoxin with the formation of hydrogen and conserves energy in the form of an ion gradient. It is therefore a simple respiratory system within a single complex. This hydrogenase shows a modular composition represented by a Na(+)/H(+) antiporter domain (Mrp) and a [NiFe] hydrogenase domain (Mbh). An analysis of the large number of microbial genome sequences available shows that homologs of Mbh and Mrp tend to be clustered within the genomes of a limited number of archaeal and bacterial species. In several instances, additional genes are associated with the Mbh and Mrp gene clusters that encode proteins that catalyze the oxidation of formate, CO or NAD(P)H. The Mbh complex also shows extensive homology to a number of subunits within the NADH quinone oxidoreductase or complex I family. The respiratory-type membrane-bound hydrogenase complex appears to be closely related to the common ancestor of complex I and [NiFe] hydrogenases in general.

[1]  Robert D. Finn,et al.  InterPro: the integrative protein signature database , 2008, Nucleic Acids Res..

[2]  C. Hägerhäll,et al.  Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. , 2002, Biochimica et biophysica acta.

[3]  E. Bonch‐Osmolovskaya,et al.  Isolation of the anaerobic thermoacidophilic crenarchaeote Acidilobus saccharovorans sp. nov. and proposal of Acidilobales ord. nov., including Acidilobaceae fam. nov. and Caldisphaeraceae fam. nov. , 2009, International journal of systematic and evolutionary microbiology.

[4]  C. Hägerhäll,et al.  The Evolution of Respiratory Chain Complex I from a Smaller Last Common Ancestor Consisting of 11 Protein Subunits , 2011, Journal of Molecular Evolution.

[5]  J. Meyer,et al.  Classification and phylogeny of hydrogenases. , 2001, FEMS microbiology reviews.

[6]  C. Schleper,et al.  “Hot standards” for the thermoacidophilic archaeon Sulfolobus solfataricus , 2009, Extremophiles.

[7]  S. Singer,et al.  CO-dependent H2 evolution by Rhodospirillum rubrum: role of CODH:CooF complex. , 2006, Biochimica et biophysica acta.

[8]  M. Adams,et al.  Phosphoenolpyruvate Synthetase from the Hyperthermophilic Archaeon Pyrococcus furiosus , 2001, Journal of bacteriology.

[9]  D. Boone,et al.  Emendation of the Genus Thermobacteroides: Thermobacteroides proteolyticus sp. nov., a Proteolytic Acetogen from a Methanogenic Enrichment , 1985 .

[10]  A. Stams,et al.  Sugar metabolism of hyperthermophiles , 1996 .

[11]  M. Adams,et al.  Deletion Strains Reveal Metabolic Roles for Key Elemental Sulfur-Responsive Proteins in Pyrococcus furiosus , 2011, Journal of bacteriology.

[12]  J. Meyer,et al.  [FeFe] hydrogenases and their evolution: a genomic perspective , 2007, Cellular and Molecular Life Sciences.

[13]  R. Sawers,et al.  Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme , 1985, Journal of bacteriology.

[14]  R. Hedderich,et al.  Methanobacterium thermoautotrophicum encodes two multisubunit membrane-bound [NiFe] hydrogenases. Transcription of the operons and sequence analysis of the deduced proteins. , 1999, European journal of biochemistry.

[15]  W. D. de Vos,et al.  The Ferredoxin-dependent Conversion of Glyceraldehyde-3-phosphate in the Hyperthermophilic ArchaeonPyrococcus furiosus Represents a Novel Site of Glycolytic Regulation* , 1998, The Journal of Biological Chemistry.

[16]  M. Adams,et al.  Purification and Characterization of a Membrane-Bound Hydrogenase from the Hyperthermophilic ArchaeonPyrococcus furiosus , 2000, Journal of bacteriology.

[17]  P. Vignais,et al.  Occurrence, classification, and biological function of hydrogenases: an overview. , 2007, Chemical reviews.

[18]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[19]  T. Swartz,et al.  The Mrp system: a giant among monovalent cation/proton antiporters? , 2005, Extremophiles.

[20]  F. Robb,et al.  Enzymes of hydrogen metabolism in Pyrococcus furiosus. , 2000, European journal of biochemistry.

[21]  H. Sakuraba,et al.  Unique sugar metabolism and novel enzymes of hyperthermophilic archaea. , 2004, Chemical record.

[22]  E. Boyd,et al.  Isolation, Characterization, and Ecology of Sulfur-Respiring Crenarchaea Inhabiting Acid-Sulfate-Chloride-Containing Geothermal Springs in Yellowstone National Park , 2007, Applied and Environmental Microbiology.

[23]  R. Hedderich,et al.  Purification and catalytic properties of a CO-oxidizing:H2-evolving enzyme complex from Carboxydothermus hydrogenoformans. , 2002, European journal of biochemistry.

[24]  H. Huber,et al.  The respiratory chain of the thermophilic archaeon Sulfolobus metallicus: studies on the type-II NADH dehydrogenase. , 2003, Biochimica et biophysica acta.

[25]  R. Ladenstein,et al.  A protein disulfide oxidoreductase from the archaeon Pyrococcus furiosus contains two thioredoxin fold units , 1998, Nature Structural Biology.

[26]  Bi Cheng Wang,et al.  SurR regulates hydrogen production in Pyrococcus furiosus by a sulfur‐dependent redox switch , 2010, Molecular microbiology.

[27]  M. Adams,et al.  Key Role for Sulfur in Peptide Metabolism and in Regulation of Three Hydrogenases in the Hyperthermophilic ArchaeonPyrococcus furiosus , 2001, Journal of bacteriology.

[28]  H. Klenk,et al.  Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides , 1990, Journal of bacteriology.

[29]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[30]  S. Shima,et al.  The crystal structure of C176A mutated [Fe]‐hydrogenase suggests an acyl‐iron ligation in the active site iron complex , 2009, FEBS letters.

[31]  R. Thauer,et al.  Energy Conservation in Chemotrophic Anaerobic Bacteria , 1977, Bacteriological reviews.

[32]  W. Doolittle,et al.  Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from an oil production fluid. , 2009, International journal of systematic and evolutionary microbiology.

[33]  Erin Beck,et al.  The comprehensive microbial resource , 2000, Nucleic Acids Res..

[34]  M. Adams,et al.  Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. , 1993, Biochimica et biophysica acta.

[35]  August Böck,et al.  Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenylase components , 1990 .

[36]  M. Tivey,et al.  A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents , 2006, Nature.

[37]  R. Hedderich,et al.  Energy-Converting [NiFe] Hydrogenases: More than Just H2 Activation , 2006, Journal of Molecular Microbiology and Biotechnology.

[38]  J. W. Peters,et al.  Identification and Characterization of a Novel Member of the Radical AdoMet Enzyme Superfamily and Implications for the Biosynthesis of the Hmd Hydrogenase Active Site Cofactor , 2009, Journal of bacteriology.

[39]  P. Soucaille,et al.  Complete activity profile of Clostridium acetobutylicum [FeFe]-hydrogenase and kinetic parameters for endogenous redox partners. , 2007, FEMS microbiology letters.

[40]  N. Ravin,et al.  Metabolic Versatility and Indigenous Origin of the Archaeon Thermococcus sibiricus, Isolated from a Siberian Oil Reservoir, as Revealed by Genome Analysis , 2009, Applied and Environmental Microbiology.

[41]  M. Posewitz,et al.  New Frontiers in Hydrogenase Structure and Biosynthesis , 2008 .

[42]  R. Hedderich,et al.  Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri. , 1999, European journal of biochemistry.

[43]  T. Kudo,et al.  Characterization of a gene responsible for the Na+/H+ antiporter system of alkalophilic Bacillus species strain C‐125 , 1994, Molecular microbiology.

[44]  W. D. de Vos,et al.  The unique features of glycolytic pathways in Archaea. , 2003, The Biochemical journal.

[45]  Sun-Shin Cha,et al.  Formate-driven growth coupled with H2 production , 2010, Nature.

[46]  T. Friedrich,et al.  The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane‐bound multisubunit hydrogenases , 2000, FEBS letters.

[47]  R. Huber,et al.  Sulfur-inhibited Thermosphaera aggregans sp. nov., a new genus of hyperthermophilic archaea isolated after its prediction from environmentally derived 16S rRNA sequences. , 1998, International journal of systematic bacteriology.

[48]  M. Adams,et al.  The Iron-Hydrogenase of Thermotoga maritima Utilizes Ferredoxin and NADH Synergistically: a New Perspective on Anaerobic Hydrogen Production , 2009, Journal of bacteriology.

[49]  M. Adams,et al.  Sulfide dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur , 1994, Journal of bacteriology.

[50]  Patrick Wincker,et al.  Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radioresistant organism known amongst the Archaea , 2009, Genome Biology.

[51]  P. D. de Jong,et al.  Bovine-heart NADH:ubiquinone oxidoreductase is a monomer with 8 Fe-S clusters and 2 FMN groups. , 1997, Biochimica et biophysica acta.

[52]  Sean D. Hooper,et al.  Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens , 2009, PloS one.

[53]  Michel Frey,et al.  Crystal structure of the nickel–iron hydrogenase from Desulfovibrio gigas , 1995, Nature.

[54]  S. Salzberg,et al.  Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.

[55]  Harald Huber,et al.  Ignicoccus hospitalis sp. nov., the host of 'Nanoarchaeum equitans'. , 2007, International journal of systematic and evolutionary microbiology.

[56]  B. Patel,et al.  Aminobacterium colombiensegen. nov. sp. nov., an amino acid-degrading anaerobe isolated from anaerobic sludge. , 1998, Anaerobe.

[57]  Natalia N. Ivanova,et al.  A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans , 2008, Genome Biology.

[58]  H. Atomi,et al.  Distinct Physiological Roles of the Three [NiFe]-Hydrogenase Orthologs in the Hyperthermophilic Archaeon Thermococcus kodakarensis , 2011, Journal of bacteriology.

[59]  M. Adams,et al.  Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[60]  W. Whitman,et al.  Characterization of Energy-Conserving Hydrogenase B in Methanococcus maripaludis , 2010, Journal of bacteriology.

[61]  August Böck,et al.  Maturation of hydrogenases. , 2006, Advances in microbial physiology.

[62]  M. Adams,et al.  A simple energy-conserving system: Proton reduction coupled to proton translocation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[63]  A. Volbeda,et al.  High-resolution crystallographic analysis of Desulfovibrio fructosovorans [NiFe] hydrogenase , 2002 .

[64]  R. Hedderich,et al.  A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. , 2004, Microbiology.

[65]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[66]  Lynne A. Goodwin,et al.  Complete genome sequence of Aminobacterium colombiense type strain (ALA-1T) , 2010, Standards in genomic sciences.

[67]  J. W. Peters,et al.  Evolutionary significance of an algal gene encoding an [FeFe]-hydrogenase with F-domain homology and hydrogenase activity in Chlorella variabilis NC64A , 2011, Planta.

[68]  Lynne A. Goodwin,et al.  Complete genome sequence of Ignisphaera aggregans type strain (AQ1.S1T) , 2010, Standards in genomic sciences.

[69]  S. Shima,et al.  Carbon monoxide as an intrinsic ligand to iron in the active site of the iron-sulfur-cluster-free hydrogenase H2-forming methylenetetrahydromethanopterin dehydrogenase as revealed by infrared spectroscopy. , 2004, Journal of the American Chemical Society.

[70]  M. Adams,et al.  SurR: a transcriptional activator and repressor controlling hydrogen and elemental sulphur metabolism in Pyrococcus furiosus , 2009, Molecular microbiology.

[71]  Olga Zhaxybayeva,et al.  On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales , 2009, Proceedings of the National Academy of Sciences.

[72]  H. Sakuraba,et al.  Novel energy metabolism in anaerobic hyperthermophilic archaea: a modified Embden-Meyerhof pathway. , 2002, Journal of bioscience and bioengineering.

[73]  M. Thomm,et al.  Thermococcus aegaeicus sp. nov. and Staphylothermus hellenicus sp. nov., two novel hyperthermophilic archaea isolated from geothermally heated vents off Palaeochori Bay, Milos, Greece. , 2000, International journal of systematic and evolutionary microbiology.

[74]  K. Ma,et al.  Minimal sulfur requirement for growth and sulfur-dependent metabolism of the hyperthermophilic archaeon Staphylothermus marinus. , 2003, Archaea.

[75]  A. Böck,et al.  Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli , 1992, Molecular microbiology.

[76]  H. Huber,et al.  A sodium ion‐dependent A1AO ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus , 2007, The FEBS journal.

[77]  S. Kang,et al.  Proteome analysis of Thermococcus onnurineus NA1 reveals the expression of hydrogen gene cluster under carboxydotrophic growth. , 2011, Journal of proteomics.

[78]  M. Adams,et al.  [18] Hydrogenases I and II from Pyrococcus furiosus , 2001 .

[79]  Hans-Peter Klenk,et al.  The genome of Hyperthermus butylicus: a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108 °C , 2007 .

[80]  Michael W. W. Adams,et al.  Insights into the Metabolism of Elemental Sulfur by the Hyperthermophilic Archaeon Pyrococcus furiosus: Characterization of a Coenzyme A- Dependent NAD(P)H Sulfur Oxidoreductase , 2007, Journal of bacteriology.

[81]  T. Fukui,et al.  Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. , 2005, Genome research.

[82]  I. McDonald,et al.  Ignisphaera aggregans gen. nov., sp. nov., a novel hyperthermophilic crenarchaeote isolated from hot springs in Rotorua and Tokaanu, New Zealand. , 2006, International journal of systematic and evolutionary microbiology.

[83]  Philip Hinchliffe,et al.  Structure of the Hydrophilic Domain of Respiratory Complex I from Thermus thermophilus , 2006, Science.

[84]  C. Hägerhäll,et al.  The ‘antiporter module’ of respiratory chain Complex I includes the MrpC/NuoK subunit – a revision of the modular evolution scheme , 2003, FEBS letters.

[85]  R. Ladenstein,et al.  Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles , 2006, The FEBS journal.

[86]  M. Adams,et al.  Glyceraldehyde-3-phosphate Ferredoxin Oxidoreductase, a Novel Tungsten-containing Enzyme with a Potential Glycolytic Role in the Hyperthermophilic Archaeon Pyrococcus furiosus(*) , 1995, The Journal of Biological Chemistry.

[87]  M. Adams,et al.  Natural Competence in the Hyperthermophilic Archaeon Pyrococcus furiosus Facilitates Genetic Manipulation: Construction of Markerless Deletions of Genes Encoding the Two Cytoplasmic Hydrogenases , 2011, Applied and Environmental Microbiology.

[88]  Daniel H. Huson,et al.  Dendroscope: An interactive viewer for large phylogenetic trees , 2007, BMC Bioinformatics.

[89]  P. Oger,et al.  Complete Genome Sequence of the Hyperthermophilic, Piezophilic, Heterotrophic, and Carboxydotrophic Archaeon Thermococcus barophilus MP , 2011, Journal of bacteriology.

[90]  J. Crolet,et al.  Thiosulfate reduction, an important physiological feature shared by members of the order thermotogales , 1995, Applied and environmental microbiology.

[91]  C. Vieille,et al.  Hyperthermophilic Enzymes: Sources, Uses, and Molecular Mechanisms for Thermostability , 2001, Microbiology and Molecular Biology Reviews.

[92]  A. Stams,et al.  Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. , 2002, International journal of systematic and evolutionary microbiology.

[93]  T. Hoaki,et al.  Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. , 2001, International journal of systematic and evolutionary microbiology.

[94]  B J Lemon,et al.  A novel FeS cluster in Fe-only hydrogenases. , 2000, Trends in biochemical sciences.

[95]  R. Ladenstein,et al.  Functional properties of the protein disulfide oxidoreductase from the archaeon Pyrococcus furiosus: a member of a novel protein family related to protein disulfide-isomerase. , 2004, European journal of biochemistry.

[96]  R. Hedderich Energy-Converting [NiFe] Hydrogenases from Archaea and Extremophiles: Ancestors of Complex I , 2004, Journal of bioenergetics and biomembranes.

[97]  Matthew R. Johnson,et al.  Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. , 2006, FEMS microbiology reviews.

[98]  F. Lottspeich,et al.  Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens. , 2003, Microbiology.

[99]  W. Hagen,et al.  UvA-DARE (Digital Academic Repository) Similarities in the architecture of the active sites of Ni-hydrogenases and Fe-hydrogenases detected by means of infrared spectroscopy , 2004 .

[100]  S. Kang,et al.  Identification of a Novel Class of Membrane-Bound [NiFe]-Hydrogenases in Thermococcus onnurineus NA1 by In Silico Analysis , 2010, Applied and Environmental Microbiology.

[101]  Robert Huber,et al.  Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C , 1986, Archives of Microbiology.

[102]  M. Adams,et al.  Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus , 1996, Journal of bacteriology.

[103]  A. Pierik,et al.  Biological activition of hydrogen , 1997, Nature.

[104]  G. Rákhely,et al.  Formate hydrogenlyase in the hyperthermophilic archaeon, Thermococcus litoralis , 2008, BMC Microbiology.

[105]  E. Stackebrandt,et al.  The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent , 2004, Extremophiles.

[106]  J. Blamey,et al.  A variable-temperature direct electrochemical study of metalloproteins from hyperthermophilic microorganisms involved in hydrogen production from pyruvate. , 1995, Biochemistry.

[107]  J. Chun,et al.  The Complete Genome Sequence of Thermococcus onnurineus NA1 Reveals a Mixed Heterotrophic and Carboxydotrophic Metabolism , 2008, Journal of bacteriology.

[108]  M. Adams,et al.  Potentiometric and electron nuclear double resonance properties of the two spin forms of the [4Fe-4S]+ cluster in the novel ferredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus. , 1991, The Journal of biological chemistry.

[109]  Seigo Shima,et al.  A third type of hydrogenase catalyzing H2 activation. , 2007, Chemical record.

[110]  W. Hagen,et al.  Hyperthermophilic redox chemistry: a re‐evaluation , 1998, FEBS letters.

[111]  K. Ma,et al.  Characterization of a Thioredoxin-Thioredoxin Reductase System from the Hyperthermophilic Bacterium Thermotoga maritima , 2010, Journal of bacteriology.

[112]  U. Brandt,et al.  The three families of respiratory NADH dehydrogenases. , 2008, Results and problems in cell differentiation.

[113]  R. Sawers,et al.  Maturation of [NiFe]-hydrogenases in Escherichia coli , 2007, BioMetals.

[114]  P. Oger,et al.  Complete Genome Sequence of the Obligate Piezophilic Hyperthermophilic Archaeon Pyrococcus yayanosii CH1 , 2011, Journal of bacteriology.

[115]  J. W. Peters,et al.  In vitro activation of [FeFe] hydrogenase: new insights into hydrogenase maturation , 2007, JBIC Journal of Biological Inorganic Chemistry.

[116]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[117]  Konstantin G. Skryabin,et al.  The Genome Sequence of the Crenarchaeon Acidilobus saccharovorans Supports a New Order, Acidilobales, and Suggests an Important Ecological Role in Terrestrial Acidic Hot Springs , 2010, Applied and Environmental Microbiology.

[118]  Luke E. Ulrich,et al.  Genome Sequence of Thermofilum pendens Reveals an Exceptional Loss of Biosynthetic Pathways without Genome Reduction , 2008, Journal of bacteriology.

[119]  Shigeki Mitaku,et al.  SOSUI: classification and secondary structure prediction system for membrane proteins , 1998, Bioinform..

[120]  T. Fukui,et al.  Phosphoenolpyruvate synthase plays an essential role for glycolysis in the modified Embden‐Meyerhof pathway in Thermococcus kodakarensis , 2006, Molecular microbiology.

[121]  M. Adams,et al.  The hyperthermophilic bacterium, Thermotoga maritima, contains an unusually complex iron-hydrogenase: amino acid sequence analyses versus biochemical characterization. , 1999, Biochimica et biophysica acta.

[122]  P. Schönheit,et al.  Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway , 1994, Archives of Microbiology.

[123]  A. Reysenbach,et al.  Electron microscopy encounters with unusual thermophiles helps direct genomic analysis of Aciduliprofundum boonei , 2008, Geobiology.

[124]  Anne-Kristin Kaster,et al.  Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. , 2010, Annual review of biochemistry.

[125]  David Posada,et al.  ProtTest: selection of best-fit models of protein evolution , 2005, Bioinform..