Anisotropic magnetic excitations of a frustrated bilinear-biquadratic spin model: Implications for spin waves of detwinned iron pnictides

Elucidating the nature of spin excitations is important to understanding the mechanism of superconductivity in the iron pnictides. Motivated by recent inelastic neutron scattering measurements in the nearly 100% detwinned BaFe$_{2}$As$_{2}$, we study the spin dynamics of an $S=1$ frustrated bilinear-biquadratic Heisenberg model in the antiferromagnetic phase with wavevector $(\pi,0)$. The biquadratic interactions are treated in a dynamical way using a flavor-wave theory in an $SU(3)$ representation. Besides the magnon (dipolar) excitations, the biquadratic interactions give rise to quadrupolar excitations at high energies. We find that the quadrupolar wave significantly influences, in an energy dependent way, the anisotropy between the spin excitation spectra along the $(\pi,0)$ and $(0,\pi)$ directions in the wave vector space. Our theoretical results capture the essential behavior of the spin dynamics measured in the antiferromagnetic phase of the detwinned BaFe$_2$As$_2$. More generally, our results underscore the importance of electron correlation effects for the microscopic physics of the iron pnictides.

[1]  R. Yu,et al.  Broken mirror symmetry, incommensurate spin correlations, and B2g nematic order in iron pnictides , 2019, Physical Review B.

[2]  R. Birgeneau,et al.  Intertwined Magnetic and Nematic Orders in Semiconducting KFe_{0.8}Ag_{1.2}Te_{2}. , 2019, Physical review letters.

[3]  T. Devereaux,et al.  Frustrated magnetism from local moments in FeSe , 2018, Physical Review B.

[4]  P. Y. Portnichenko,et al.  Evolution of the propagation vector of antiferroquadrupolar phases in Ce3Pd20Si6 under magnetic field , 2018, Physical Review B.

[5]  Huiqian Luo,et al.  Spin Waves in Detwinned BaFe_{2}As_{2}. , 2018, Physical review letters.

[6]  R. Yu,et al.  Antiferroquadrupolar Order and Rotational Symmetry Breaking in a Generalized Bilinear-Biquadratic Model on a Square Lattice. , 2016, Physical review letters.

[7]  E. Abrahams,et al.  High Temperature Superconductivity in Iron Pnictides and Chalcogenides , 2016, 1604.03566.

[8]  D. Yao,et al.  Spin and quadrupolar orders in the spin-1 bilinear-biquadratic model for iron-based superconductors , 2016, 1603.03273.

[9]  P. Hirschfeld Using Gap Symmetry and Structure to Reveal the Pairing Mechanism in Fe-based Superconductors , 2015, 1510.01386.

[10]  S. Chi,et al.  A Mott insulator continuously connected to iron pnictide superconductors , 2015, Nature Communications.

[11]  P. Dai Antiferromagnetic order and spin dynamics in iron-based superconductors , 2015, 1503.02340.

[12]  R. Yu,et al.  Antiferroquadrupolar and Ising-nematic orders of a frustrated bilinear-biquadratic Heisenberg model and implications for the magnetism of FeSe. , 2015, Physical review letters.

[13]  Dung-Hai Lee,et al.  Nematicity and quantum paramagnetism in FeSe , 2015, Nature Physics.

[14]  M. Fang,et al.  Mott-Kondo insulator behavior in the iron oxychalcogenides , 2015, 1501.00332.

[15]  A. Nevidomskyy,et al.  Ising-nematic order in the bilinear-biquadratic model for the iron pnictides , 2014, 1411.1462.

[16]  N. Shannon,et al.  Theory of spin excitations in a quantum spin-nematic state , 2013 .

[17]  E. Abrahams,et al.  Electron Correlation and Spin Dynamics in Iron Pnictides and Chalcogenides , 2012, 1210.5017.

[18]  M. Müller,et al.  Destruction of the Kondo effect in the cubic heavy-fermion compound Ce3Pd20Si6. , 2012, Nature materials.

[19]  S. Hayden,et al.  Nature of magnetic excitations in superconducting BaFe1.9Ni0.1As2 , 2012, Nature Physics.

[20]  E. Abrahams,et al.  Spin dynamics of aJ1-J2-Kmodel for the paramagnetic phase of iron pnictides , 2011, 1112.4785.

[21]  M. J. Calderón,et al.  Magnetic interactions in iron superconductors studied with a five-orbital model within the Hartree-Fock and Heisenberg approximations , 2011, 1107.2279.

[22]  G. Kotliar,et al.  Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. , 2011, Nature materials.

[23]  O. Sushkov,et al.  Self-consistent spin-wave theory for a frustrated Heisenberg model with biquadratic exchange in the columnar phase and its application to iron pnictides , 2011, 1104.1954.

[24]  Fa Wang,et al.  The Electron-Pairing Mechanism of Iron-Based Superconductors , 2011, Science.

[25]  M. Fang,et al.  Fe-based superconductivity with Tc=31 K bordering an antiferromagnetic insulator in (Tl,K) FexSe2 , 2011 .

[26]  G. Chen,et al.  Effect of varying iron content on the transport properties of the potassium-intercalated iron selenide KxFe2-ySe2 , 2011, 1101.0789.

[27]  T. Perring,et al.  Nematic spin fluid in the tetragonal phase of BaFe$_{2}$As$_{2}$ , 2010, 1011.3771.

[28]  A. L. Wysocki,et al.  Consistent model of magnetism in ferropnictides , 2010, 1011.1715.

[29]  E. Abrahams,et al.  Spin dynamics of a J1-J2 antiferromagnet and its implications for iron pnictides , 2010, 1009.1111.

[30]  G. Giovannetti,et al.  Proximity of pnictide superconductors to a quantum tricritical point , 2010, Nature communications.

[31]  M. Fang,et al.  Fe-based high temperature superconductivity with Tc=31K bordering an insulating antiferromagnet in (Tl,K)FexSe2 Crystals , 2010, 1012.5236.

[32]  J. Kim,et al.  Symmetry of spin excitation spectra in the tetragonal paramagnetic and superconducting phases of 122-ferropnictides , 2010, 1007.3722.

[33]  J. S. Evans,et al.  Low-temperature nuclear and magnetic structures of La 2 O 2 Fe 2 O Se 2 from x-ray and neutron diffraction measurements , 2010, 1005.4600.

[34]  D. Johnston,et al.  The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides , 2010, 1005.4392.

[35]  M. Stone,et al.  Anisotropic and quasipropagating spin excitations in superconducting Ba(Fe$_{0.926}$Co$_{0.074}$)$_2$As$_2$ , 2010, 1003.1687.

[36]  F. Kruger,et al.  Orbital ordering and unfrustrated (π,0) magnetism from degenerate double exchange in the iron pnictides , 2010, 1002.3165.

[37]  R. Moessner,et al.  Theory of itinerant magnetic excitations in the spin-density-wave phase of iron-based superconductors , 2010, 1002.1668.

[38]  T. Perring,et al.  Paramagnetic Spin Correlations in CaFe2As2 Single Crystals , 2010, 1001.2804.

[39]  M. Fang,et al.  Band narrowing and Mott localization in iron oxychalcogenides La2O2Fe2O(Se,S)2. , 2009, Physical review letters.

[40]  S. Hayden,et al.  Dispersive spin fluctuations in the nearly optimally doped superconductor Ba(Fe1-xCox)2As2 (x=0.065) , 2009, 0912.4134.

[41]  Hiroshi Ishida,et al.  Fermi-liquid, non-Fermi-liquid, and Mott phases in iron pnictides and cuprates , 2009, 0911.1940.

[42]  J. Oitmaa,et al.  Spin waves in J 1 a − J 1 b − J 2 orthorhombic square-lattice Heisenberg models: Application to iron pnictide materials , 2009, 0910.1793.

[43]  K. Hradil,et al.  Normal-state spin dynamics and temperature-dependent spin-resonance energy in optimally doped BaFe 1.85 Co 0.15 As 2 , 2009, 0907.3632.

[44]  D. Basov,et al.  Electronic correlations in the iron pnictides , 2009, 0909.0312.

[45]  E. Berg,et al.  A twisted ladder: relating the Fe superconductors to the high-Tc cuprates , 2009, 0905.1096.

[46]  X. H. Chen,et al.  Spin waves and magnetic exchange interactions in CaFe 2 As 2 , 2009, 0903.2686.

[47]  E. Abrahams,et al.  Correlation effects in the iron pnictides , 2009, 0901.4112.

[48]  L. Craco,et al.  Electrodynamic response of incoherent metals : Normal phase of iron pnictides , 2009 .

[49]  E. Dagotto,et al.  Properties of a two-orbital model for oxypnictide superconductors: Magnetic order, B2g spin-singlet pairing channel, and its nodal structure , 2009, 0901.3544.

[50]  D. J. Scalapino,et al.  Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides , 2008, 0812.0343.

[51]  W. Pickett,et al.  Anisotropy, itineracy, and magnetic frustration in high-Tc iron pnictides. , 2008, Physical review letters.

[52]  J. Oitmaa,et al.  Pnictides as frustrated quantum antiferromagnets close to a quantum phase transition , 2008, 0810.3068.

[53]  Fu-Chun Zhang,et al.  Strong coupling theory for superconducting iron pnictides. , 2008, Physical review letters.

[54]  E. Abrahams,et al.  Iron pnictides as a new setting for quantum criticality , 2008, Proceedings of the National Academy of Sciences.

[55]  Dung-Hai Lee,et al.  Nodal Spin Density Wave and band topology of the FeAs based materials , 2008, 0805.3535.

[56]  Markus P. Mueller,et al.  Ising and Spin orders in Iron-Based Superconductors , 2008, 0804.4293.

[57]  Jiangping Hu,et al.  Theory of electron nematic order in LaFeAsO , 2008, 0804.3843.

[58]  T. Xiang,et al.  Arsenic-bridged antiferromagnetic superexchange interactions in LaFeAsO , 2008, 0804.3370.

[59]  E. Abrahams,et al.  Strong correlations and magnetic frustration in the high Tc iron pnictides. , 2008, Physical review letters.

[60]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[61]  F. Mila,et al.  Quadrupolar phases of the s=1 bilinear-biquadratic Heisenberg model on the triangular lattice. , 2006, Physical review letters.

[62]  P. Fazekas,et al.  Lecture notes on electron correlation and magnetism , 1999 .

[63]  강희정,et al.  17 , 1995, The Hatak Witches.

[64]  Barzykin,et al.  Possibility of observation of nontrivial magnetic order by elastic neutron scattering in magnetic field. , 1993, Physical review letters.