TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties

Synthesis—particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most notable gas sensing performances. Doping largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes.

[1]  P. M. Perillo,et al.  The gas sensing properties at room temperature of TiO2 nanotubes by anodization , 2012 .

[2]  James A. Sullivan,et al.  Visible light active C-doped titanate nanotubes prepared via alkaline hydrothermal treatment of C-doped nanoparticulate TiO2: Photo-electrochemical and photocatalytic properties , 2013 .

[3]  Giorgio Sberveglieri,et al.  Fabrication and investigation of gas sensing properties of Nb-doped TiO2 nanotubular arrays , 2012, Nanotechnology.

[4]  José Arana Varela,et al.  Impedance spectroscopy analysis of TiO2 thin film gas sensors obtained from water-based anatase colloids , 2009 .

[5]  Il-Doo Kim,et al.  Pd-doped TiO2 nanofiber networks for gas sensor applications , 2010 .

[6]  Susumu Yoshikawa,et al.  Synthesis and Thermal Analyses of TiO_2-Derived Nanotubes Prepared by the Hydrothermal Method , 2004 .

[7]  Wu Rong,et al.  one-step hydrothermal synthesis and visible-light photocatalytic activity of ultrafine cu-nanodot-modified tio2 nanotubes , 2012 .

[8]  津田 惟雄,et al.  Electronic conduction in oxides , 2000 .

[9]  A. De Marcellis,et al.  Preparation of nitrogen doped TiO2 nanofibers by near field electrospinning (NFES) technique for NO2 sensing , 2013 .

[10]  Rui Liu,et al.  Conveniently fabricated heterojunction ZnO/TiO2 electrodes using TiO2 nanotube arrays for dye-sensitized solar cells , 2012 .

[11]  Grégory Pandraud,et al.  The atomic layer deposition array defined by etch-back technique: a new method to fabricate TiO2 nanopillars, nanotubes and nanochannel arrays , 2012, Nanotechnology.

[12]  Mark H. Engelhard,et al.  MOCVD growth and structure of Nb- and V-doped TiO2 films on sapphire , 2000 .

[13]  Marc Aucouturier,et al.  Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy , 1999 .

[14]  Ming Li,et al.  Anodic fabrication and bioactivity of Nb-doped TiO2 nanotubes , 2009, Nanotechnology.

[15]  Xiaoping Han,et al.  Electronic properties of rutile TiO2 doped with 4d transition metals: First-principles study , 2013 .

[16]  Feng Li,et al.  Amorphous TiO2 nanotube arrays for low-temperature oxygen sensors , 2008, Nanotechnology.

[17]  S. Ahmadi,et al.  The effect of highly ordered titania nanotube structures on hydrogen gas detection , 2012 .

[18]  Young-Gi Lee,et al.  Lithium-ion battery anode properties of TiO2 nanotubes prepared by the hydrothermal synthesis of mixed (anatase and rutile) particles , 2010 .

[19]  Tae-Jung Ha,et al.  Gas sensing properties of ordered mesoporous TiO2 film enhanced by thermal shock induced cracking , 2013 .

[20]  Sohrab Rohani,et al.  The fabrication of highly ordered and visible-light-responsive Fe-C-N-codoped TiO2 nanotubes. , 2010, Nanotechnology.

[21]  F. Lévy,et al.  TiO2 anatase thin films as gas sensors , 1995 .

[22]  Yang Hao,et al.  Effect of nanotube diameters on bioactivity of a multifunctional titanium alloy , 2013 .

[23]  Giorgio Sberveglieri,et al.  Fabrication of pure and Nb–TiO2 nanotubes and their functional properties , 2012 .

[24]  Bilge Saruhan,et al.  Improvement of gas sensing performance of TiO2 towards NO2 by nano-tubular structuring , 2012 .

[25]  Kwun-Bum Chung,et al.  The effect of Nb doping on the performance and stability of TiOx devices , 2013 .

[26]  Anders Palmqvist,et al.  How the Anatase-to-Rutile Ratio Influences the Photoreactivity of TiO2 , 2011 .

[27]  Yang Li,et al.  An excellent room-temperature hydrogen sensor based on titania nanotube-arrays , 2012 .

[28]  Yinong Liu,et al.  A unified thermodynamic theory for the formation of anodized metal oxide structures , 2012 .

[29]  Zhongchang Wang,et al.  Impact of Nb doping on gas-sensing performance of TiO2 thick-film sensors , 2012 .

[30]  Bin Tang,et al.  Preparation, characterization, corrosion behavior and bioactivity of Ni2O3-doped TiO2 nanotubes on NiTi alloy , 2012 .

[31]  Sang Min Lee,et al.  Enhanced ethanol sensing properties of TiO2 nanotube sensors , 2012 .

[32]  John C. Crittenden,et al.  Fabrication of uniform size titanium oxide nanotubes: Impact of current density and solution conditions , 2007 .

[33]  Craig A. Grimes,et al.  Hydrogen sensing using titania nanotubes , 2003 .

[34]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[35]  Chengbin Liu,et al.  Reduced graphene oxide and PbS nanoparticles co-modified TiO2 nanotube arrays as a recyclable and stable photocatalyst for efficient degradation of pentachlorophenol , 2013 .

[36]  E. Darque-Ceretti,et al.  Caractérisation d'oxydes anodiques poreux et compacts de titane et de Ta6V , 1997 .

[37]  Craig A. Grimes,et al.  Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes , 2006 .

[38]  Zafer Ziya Öztürk,et al.  Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor , 2010 .

[39]  Sheikh A. Akbar,et al.  Aluminum-doped TiO2 nano-powders for gas sensors , 2007 .

[40]  Craig A. Grimes,et al.  Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure , 2003 .

[41]  Craig A Grimes,et al.  Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. , 2009, Nature nanotechnology.

[42]  Jinwoo Lee,et al.  Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. , 2008, Nature materials.

[43]  Peng Xiao,et al.  Preparation of SnO2@C-doping TiO2 nanotube arrays and its electrochemical and photoelectrochemical properties , 2013 .

[44]  Seong-Hyeon Hong,et al.  A hydrogen gas sensor employing vertically aligned TiO2 nanotube arrays prepared by template-assisted method , 2011 .

[45]  Xuefei Zhou,et al.  Fabrication of bidirectionally doped β-Bi2O3/TiO2-NTs with enhanced photocatalysis under visible light irradiation. , 2013, Journal of hazardous materials.

[46]  Andrei Ghicov,et al.  Photoresponse in the visible range from Cr doped TiO2 nanotubes , 2007 .

[47]  Kengo Shimanoe,et al.  Roles of Shape and Size of Component Crystals in Semiconductor Gas Sensors I. Response to Oxygen , 2008 .

[48]  Matteo Ferroni,et al.  Nanostructured pure and Nb-doped TiO2 as thick film gas sensors for environmental monitoring , 1999 .

[49]  Carles Cané,et al.  Micro-machined WO3-based sensors selective to oxidizing gases , 2008 .

[50]  Patrik Schmuki,et al.  Self-Organized Porous Titanium Oxide Prepared in H 2 SO 4 / HF Electrolytes , 2003 .

[51]  Lin-Bao Luo,et al.  TiO2 nanotube-based field effect transistors and their application as humidity sensors , 2012 .

[52]  Craig A. Grimes,et al.  A Sentinel Sensor Network for Hydrogen Sensing , 2003 .

[53]  A. Sclafani,et al.  Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions , 1996 .

[54]  Kengo Shimanoe,et al.  Roles of Shape and Size of Component Crystals in Semiconductor Gas Sensors , 2008 .

[55]  Chaohao Chen,et al.  Sensing Performance of Precisely Ordered TiO2 Nanowire Gas Sensors Fabricated by Electron-Beam Lithography , 2013, Sensors.

[56]  Kiran Jain,et al.  Highly sensitive and pulse-like response toward ethanol of Nb doped TiO2 nanorods based gas sensors , 2012 .

[57]  Ning Liu,et al.  Photoelectrochemical and photocatalytic activity of tungsten doped TiO2 nanotube layers in the near visible region , 2011 .

[58]  Saveria Santangelo,et al.  On the hydrogen sensing mechanism of Pt/TiO2/CNTs based devices , 2013 .

[59]  Yasushi Sato,et al.  Transparent conductive Nb-doped TiO2 films deposited by direct-current magnetron sputtering using a TiO2-x target , 2008 .

[60]  Xiaoxing Zhang,et al.  TiO2 Nanotube Array Sensor for Detecting the SF6 Decomposition Product SO2 , 2012, Sensors.

[61]  Srimala Sreekantan,et al.  Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis. , 2010, Nanotechnology.

[62]  D J Fabian,et al.  The Chemical Physics of Surfaces , 1978 .

[63]  Ulrike Diebold,et al.  Reactivity of TiO2 rutile and anatase surfaces toward nitroaromatics. , 2010, Journal of the American Chemical Society.

[64]  Srimala Sreekantan,et al.  Incorporation of WO3 species into TiO2 nanotubes via wet impregnation and their water-splitting performance , 2013 .

[65]  Giorgio Sberveglieri,et al.  Cr-inserted TiO2 thin films for chemical gas sensors , 2007 .

[66]  Henk J. Bolink,et al.  Efficient Polymer Light‐Emitting Diode Using Air‐Stable Metal Oxides as Electrodes , 2009 .

[67]  Clifton G. Fonstad,et al.  Defect structure and electronic donor levels in stannic oxide crystals , 1973 .

[68]  Tae-Sung Bae,et al.  Bioactivity of Ti-6Al-4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer. , 2012, Journal of biomedical materials research. Part B, Applied biomaterials.

[69]  Chien-Min Liu,et al.  The heterojunction effects of TiO2 nanotubes fabricated by atomic layer deposition on photocarrier transportation direction , 2012, Nanoscale Research Letters.

[70]  Zhao Peng One-Step Hydrothermal Synthesis and Visible-Light Photocatalytic Activity of Ultrafine Cu-Nanodot-Modified TiO_2 Nanotubes , 2012 .

[71]  P. Hoyer,et al.  Formation of a Titanium Dioxide Nanotube Array , 1996 .

[72]  Il-Doo Kim,et al.  Macroporous TiO2 thin film gas sensors obtained using colloidal templates , 2008 .

[73]  Marcin Pisarek,et al.  Evaluation of the Antibacterial Activity of Ag‐Loaded TiO2 Nanotubes , 2012 .

[74]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[75]  Jordi Arbiol,et al.  Effects of Nb doping on the TiO2 anatase-to-rutile phase transition , 2002 .

[76]  Lan Sun,et al.  Self-organized TiO2 nanotubes in mixed organic–inorganic electrolytes and their photoelectrochemical performance , 2009 .

[77]  C. Di Natale,et al.  A contribution on some basic definitions of sensors properties , 2001, IEEE Sensors Journal.

[78]  Yong Han,et al.  Effect of nanostructured titanium on anodization growth of self-organized TiO2 nanotubes , 2010, Nanotechnology.

[79]  S. Umare,et al.  Effect of Ce, N and S multi-doping on the photocatalytic activity of TiO2 , 2013 .

[80]  Patrik Schmuki,et al.  High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.

[81]  Christopher R. Bowen,et al.  Effect of heat treatment on the properties and structure of TiO2 nanotubes: phase composition and chemical composition , 2010 .

[82]  Haibo Pan,et al.  Phosphorus doped TiO2 as oxygen sensor with low operating temperature and sensing mechanism , 2013 .

[83]  Zhaohui Li,et al.  Wide-range hydrogen sensing with Nb-doped TiO2 nanotubes , 2012, Nanotechnology.

[84]  L. Kronik,et al.  Surface photovoltage phenomena: theory, experiment, and applications , 1999 .

[85]  Jun Wang,et al.  Anodic Formation of Ordered TiO2 Nanotube Arrays: Effects of Electrolyte Temperature and Anodization Potential , 2009 .

[86]  Ronghua Liu,et al.  Fabrication of graphene films on TiO2 nanotube arrays for photocatalytic application , 2011 .

[87]  Yan Wang,et al.  Nitrogen doped TiO2 nanotube arrays with high photoelectrochemical activity for photocatalytic applications , 2013 .

[88]  Giorgio Sberveglieri,et al.  TiO2 nanotubular and nanoporous arrays by electrochemical anodization on different substrates , 2011 .

[89]  Teruaki Nomiyama,et al.  Enhancement of carrier mobility by electrospun nanofibers of Nb-doped TiO2 in dye sensitized solar cells , 2013 .

[90]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[91]  Jian Pu,et al.  Synthesis of phosphorus-doped titania with mesoporous structure and excellent photocatalytic activity , 2013 .

[92]  M. Madou,et al.  Chemical Sensing With Solid State Devices , 1989 .

[93]  Giorgio Sberveglieri,et al.  Electrical-Based Gas Sensing , 2009 .

[94]  Xiao Hu,et al.  Template‐Directed Liquid ALD Growth of TiO2 Nanotube Arrays: Properties and Potential in Photovoltaic Devices , 2010 .

[95]  S. Benkara,et al.  Synthesis of Sn doped ZnO/TiO2 nanocomposite film and their application to H2 gas sensing properties , 2013 .

[96]  Christian Elsässer,et al.  Density functional theory study of dopants in polycrystalline TiO 2 , 2011 .

[97]  Zafer Ziya Öztürk,et al.  Fabrication of TiO2 nanotubes by anodization of Ti thin films for VOC sensing , 2011 .

[98]  L. A. Patil,et al.  Nickel doped spray pyrolyzed nanostructured TiO2 thin films for LPG gas sensing , 2013 .