Unsupervised landmark analysis for jump detection in molecular dynamics simulations

Molecular dynamics is a versatile and powerful method to study diffusion in solid-state ionic conductors, requiring minimal prior knowledge of equilibrium or transition states of the system's free energy surface. However, the analysis of trajectories for relevant but rare events, such as a jump of the diffusing mobile ion, is still rather cumbersome, requiring prior knowledge of the diffusive process in order to get meaningful results. In this work we present a novel approach to detect the relevant events in a diffusive system without assuming prior information regarding the underlying process. We start from a projection of the atomic coordinates into a landmark basis to identify the dominant features in a mobile ion's environment. Subsequent clustering in landmark space enables a discretization of any trajectory into a sequence of distinct states. As a final step, the use of the Smooth Overlap of Atomic Positions descriptor allows distinguishing between different environments in a straightforward way. We apply this algorithm to ten Li-ionic systems and conduct in-depth analyses of cubic Li7La3Zr2O12, tetragonal Li10GeP2S12, and the β-eucryptite LiAlSiO4. We compare our results to existing methods, underscoring strong points, weaknesses, and insights into the diffusive behavior of the ionic conduction in the materials investigated.

[1]  Yue Deng,et al.  Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li4SiO4-Li3PO4 Solid Electrolytes. , 2015, Journal of the American Chemical Society.

[2]  T. P. Kumar,et al.  Safety mechanisms in lithium-ion batteries , 2006 .

[3]  E. Cussen,et al.  Lithium dimer formation in the Li-conducting garnets Li5+xBaxLa3−xTa2O12 (0 < x ≤ 1.6) , 2007 .

[4]  Giovanni Bussi,et al.  Langevin equation with colored noise for constant-temperature molecular dynamics simulations. , 2008, Physical review letters.

[5]  Stefan Adams,et al.  Structural requirements for fast lithium ion migration in Li10GeP2S12 , 2012 .

[6]  Prateek Mehta,et al.  Understanding Ionic Conductivity Trends in Polyborane Solid Electrolytes from Ab Initio Molecular Dynamics , 2017 .

[7]  Hui Xie,et al.  Lithium Distribution in Aluminum-Free Cubic Li7La3Zr2O12 , 2011 .

[8]  Jürgen Köhler,et al.  Single-crystal X-ray Structure Analysis of the Superionic Conductor Li 10 Gep 2 S 12 † Pccp Communication , 2022 .

[9]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[10]  Benjamin J Morgan,et al.  Lattice-geometry effects in garnet solid electrolytes: a lattice-gas Monte Carlo simulation study , 2017, Royal Society Open Science.

[11]  Philippe Knauth,et al.  Inorganic solid Li ion conductors: An overview , 2009 .

[12]  Sean Hughes,et al.  Clustering by Fast Search and Find of Density Peaks , 2016 .

[13]  Ralf Möller,et al.  Insect visual homing strategies in a robot with analog processing , 2000, Biological Cybernetics.

[14]  H. Lipson Crystal Structures , 1949, Nature.

[15]  Prateek Mehta,et al.  Structural, Chemical, and Dynamical Frustration: Origins of Superionic Conductivity in closo-Borate Solid Electrolytes , 2017 .

[16]  Nicola Marzari,et al.  Proton dynamics in superprotonic CsHSO(4) , 2007, cond-mat/0702575.

[17]  Aris Marcolongo,et al.  Modeling lithium-ion solid-state electrolytes with a pinball model , 2018, Physical Review Materials.

[18]  Rua Conselheiro,et al.  MICROPOROUS AND MESOPOROUS MATERIALS 163 , 2012 .

[19]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  Stefano Baroni,et al.  Anisotropic thermal expansion in silicates: A density functional study of beta-eucryptite and related materials , 2000 .

[21]  H. G. F. Winkler,et al.  Synthese und Kristallstruktur des Eukryptits, LiAlSiO4 , 1948 .

[23]  Wei Lai,et al.  Finite-size effects on the molecular dynamics simulation of fast-ion conductors: A case study of lithium garnet oxide Li7La3Zr2O12 , 2016 .

[24]  W. Kohn,et al.  Nearsightedness of electronic matter. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[26]  Venkataraman Thangadurai,et al.  Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. , 2014, Chemical Society reviews.

[27]  Christian Masquelier,et al.  Atomic-Scale Influence of Grain Boundaries on Li-Ion Conduction in Solid Electrolytes for All-Solid-State Batteries. , 2018, Journal of the American Chemical Society.

[28]  Venkataraman Thangadurai,et al.  Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .

[29]  Wrrr-rlrrr W. Prruns The Crystal Structure of Beta Eucryptite as a Function of Temperature , 1973 .

[30]  Johann Evelio Bedoya-Cardona Análisis por dinámica molecular de propiedades tensoactivas de lipopéptidos producidos por Bacillus spp. para su potencial uso en recuperación mejorada de petróleo , 2020 .

[31]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[32]  Alessandro Curioni,et al.  Solid-State Electrolytes: Revealing the Mechanisms of Li-Ion Conduction in Tetragonal and Cubic LLZO by First-Principles Calculations , 2014 .

[33]  Shyue Ping Ong,et al.  Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors , 2013 .

[34]  Aris Marcolongo,et al.  Ionic correlations and failure of Nernst-Einstein relation in solid-state electrolytes , 2017 .

[35]  Ming Xu,et al.  Mechanisms of Li + transport in garnet-type cubic Li 3+x La 3 M 2 O 12 (M = Te, Nb, Zr) , 2012 .

[36]  Vera Donduft,et al.  Li+ ion mobility in eucryptite phases , 1988 .

[37]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[38]  Boris Kozinsky,et al.  Transport in Frustrated and Disordered Solid Electrolytes , 2020, Handbook of Materials Modeling.

[39]  Dewei Chu,et al.  Influence of lattice dynamics on lithium-ion conductivity: A first-principles study , 2018, Physical Review Materials.

[40]  M. Armand,et al.  Building better batteries , 2008, Nature.

[41]  Jeremy J. Titman,et al.  Switching on fast lithium ion conductivity in garnets : the structure and transport properties of Li3+xNd3Te2-xSbxO12 , 2008 .

[42]  Maciej Haranczyk,et al.  Addressing Challenges of Identifying Geometrically Diverse Sets of Crystalline Porous Materials , 2012, J. Chem. Inf. Model..

[43]  Shyue Ping Ong,et al.  Design and synthesis of the superionic conductor Na10SnP2S12 , 2016, Nature Communications.

[44]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[45]  Aris Marcolongo,et al.  Accurate thermal conductivities from optimally short molecular dynamics simulations , 2017, Scientific Reports.

[46]  L. Pauling THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS , 1929 .

[47]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[48]  Lynden A. Archer,et al.  Electrolytes for high-energy lithium batteries , 2012, Applied Nanoscience.

[49]  Gerbrand Ceder,et al.  First-principles theory of ionic diffusion with nondilute carriers , 2001 .

[50]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[51]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[52]  Stefan Adams,et al.  Ion transport and phase transition in Li7−xLa3(Zr2−xMx)O12 (M = Ta5+, Nb5+, x = 0, 0.25) , 2012 .

[53]  Marnix Wagemaker,et al.  Analysis of Diffusion in Solid-State Electrolytes through MD Simulations, Improvement of the Li-Ion Conductivity in β-Li3PS4 as an Example , 2017, ACS applied energy materials.

[54]  Michele Ceriotti,et al.  Recognizing Local and Global Structural Motifs at the Atomic Scale. , 2018, Journal of chemical theory and computation.

[55]  Stijn van Dongen,et al.  Graph Clustering Via a Discrete Uncoupling Process , 2008, SIAM J. Matrix Anal. Appl..

[56]  Alexander Kuhn,et al.  Tetragonal Li10GeP2S12 and Li7GePS8 – exploring the Li ion dynamics in LGPS Li electrolytes , 2013 .

[57]  Boris Kozinsky,et al.  Effect of Salt Concentration on Ion Clustering and Transport in Polymer Solid Electrolytes: A Molecular Dynamics Study of PEO–LiTFSI , 2018, Chemistry of Materials.

[58]  Boris Kozinsky,et al.  AiiDA: Automated Interactive Infrastructure and Database for Computational Science , 2015, ArXiv.

[59]  R. Kondor,et al.  On representing chemical environments , 2012, 1209.3140.

[60]  F. Allen,et al.  Acta Crystallographica Section B: Structural Science , 2002 .

[61]  Benjamin J. Morgan,et al.  Supporting data for Sparse Cyclic Excitations Explain the Low Ionic Conductivity of Stoichiometric Li7La3Zr2O12 , 2017 .

[62]  Shyue Ping Ong,et al.  Li3Y(PS4)2 and Li5PS4Cl2: New Lithium Superionic Conductors Predicted from Silver Thiophosphates using Efficiently Tiered Ab Initio Molecular Dynamics Simulations , 2017 .

[63]  Peter Moeck,et al.  Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration , 2011, Nucleic Acids Res..

[64]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[65]  Donald R. Peacor,et al.  The crystal structure of Beta eucryptite as a function of temperature , 1973 .

[66]  Maciej Haranczyk,et al.  Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials , 2012 .

[67]  Nicola Marzari,et al.  Dynamical structure, bonding, and thermodynamics of the superionic sublattice in alpha-AgI. , 2006, Physical review letters.

[68]  Benjamin J Morgan,et al.  Relationships between atomic diffusion mechanisms and ensemble transport coefficients in crystalline polymorphs. , 2014, Physical review letters.

[69]  Ste,et al.  Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li 4 SiO 4 − Li 3 PO 4 Solid Electrolytes , 2015 .

[70]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction , 2015 .

[71]  R. O. Jones,et al.  Anisotropic thermal expansion in the silicate β -eucryptite: A neutron diffraction and density functional study , 1998 .

[72]  Ivar E. Reimanis,et al.  Thermal regimes of Li‐ion conductivity in β‐eucryptite , 2017, 1705.10233.

[73]  R. Wehner,et al.  Visual navigation in insects: coupling of egocentric and geocentric information , 1996, The Journal of experimental biology.

[74]  Stephen A. Wells,et al.  Ionic diffusion in quartz studied by transport measurements, SIMS and atomistic simulations , 2005 .

[75]  Shyue Ping Ong,et al.  Effect of Rb and Ta Doping on the Ionic Conductivity and Stability of the Garnet Li7+2x–y(La3–xRbx)(Zr2–yTay)O12 (0 ≤ x ≤ 0.375, 0 ≤ y ≤ 1) Superionic Conductor: A First Principles Investigation , 2013 .

[76]  Francesco Ciucci,et al.  Data mining of molecular dynamics data reveals Li diffusion characteristics in garnet Li7La3Zr2O12 , 2017, Scientific Reports.

[77]  E. Cussen,et al.  Lithium dimer formation in the Li-conducting garnets Li(5+x)Ba(x)La(3-x)Ta2O12 (0 < x < or =1.6). , 2007, Chemical communications.

[78]  Shyue Ping Ong,et al.  First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material , 2012 .

[79]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[80]  Ming Xu,et al.  One-dimensional stringlike cooperative migration of lithium ions in an ultrafast ionic conductor , 2012 .

[81]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[82]  Heinz Schulz,et al.  Neutron scattering study of the one-dimensional ionic conductor β -eucryptite , 1980 .

[83]  Nicola Marzari,et al.  Precision and efficiency in solid-state pseudopotential calculations , 2018, npj Computational Materials.

[84]  William L. Jorgensen,et al.  Journal of Chemical Information and Modeling , 2005, J. Chem. Inf. Model..

[85]  Ying Shirley Meng,et al.  Insights into the Performance Limits of the Li7P3S11 Superionic Conductor: A Combined First-Principles and Experimental Study. , 2016, ACS applied materials & interfaces.

[86]  Yue Deng,et al.  Crystal Structures, Local Atomic Environments, and Ion Diffusion Mechanisms of Scandium-Substituted Sodium Superionic Conductor (NASICON) Solid Electrolytes , 2018 .

[87]  David E. Irwin,et al.  Finding a "Kneedle" in a Haystack: Detecting Knee Points in System Behavior , 2011, 2011 31st International Conference on Distributed Computing Systems Workshops.

[88]  Shyue Ping Ong,et al.  Insights into Diffusion Mechanisms in P2 Layered Oxide Materials by First-Principles Calculations. , 2014 .

[89]  Gábor Csányi,et al.  Comparing molecules and solids across structural and alchemical space. , 2015, Physical chemistry chemical physics : PCCP.

[90]  H. Löhneysen,et al.  Vacancy-induced low-energy excitations in the one-dimensional ionic conductor β-eucryptite , 1983 .

[91]  Yizhou Zhu,et al.  Origin of fast ion diffusion in super-ionic conductors , 2017, Nature Communications.

[92]  P. Luksch,et al.  New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.

[93]  S. Snyder,et al.  Proceedings of the National Academy of Sciences , 1999 .

[94]  Toshihiro Kasuga,et al.  Concerted Migration Mechanism in the Li Ion Dynamics of Garnet-Type Li7La3Zr2O12 , 2013 .

[95]  Prateek Mehta,et al.  Effects of Sublattice Symmetry and Frustration on Ionic Transport in Garnet Solid Electrolytes. , 2016, Physical review letters.

[96]  Michele Ceriotti,et al.  Recognizing molecular patterns by machine learning: an agnostic structural definition of the hydrogen bond. , 2014, The Journal of chemical physics.