The Paleocene-Eocene thermal maximum (PETM) initiated a global biotic event with major evolutionary impacts. Since a series of minor δ C and O excursions, indicative of hyperthermals, now appears to characterize early Eocene climate, it remains to be investigated how the biosphere responded to these warming events. We studied the Esna Formation at Dababiya (Nile Basin, Egypt), in order to identify Eocene thermal maximum 2 (ETM-2) and to evaluate the foraminiferal and ostracode patterns. The studied interval generally consists of gray-brown marls and shales and is interrupted by a sequence of deviating lithologies, representing an early Eocene Egyptian environmental perturbation that can be linked to ETM-2. The ETM-2 interval consists of brownish shales (bed 1) to marls (bed 2) at the base that grade into a foraminifera-rich chalky limestone (bed 3) at the top. This conspicuous white 13 limestone bed forms the base of the Abu Had Member. A distinct negative δ C excursion of approximately 1.6‰ is recorded encom13 passing this interval and a second negative δ C shift of 1‰ occurs 5 m higher. These two isotope events are situated respectively in the basal and lower part of the calcareous nannoplankton zone NP11 and appear to correlate with the H1 and H2(?) excursions 13 observed in the deep-sea records. The lower δ C excursion is associated with benthic foraminiferal and ostracode changes and settlement of impoverished anomalous foraminiferal (planktic and benthic) assemblages, indicating a transient environmental anomaly, disrupting the entire marine ecosystem during ETM-2. Our observations indicate some similarities between the sedimentary and biotic expressions of ETM-2 and the PETM at Dababiya, pointing to similar processes operating in the Egyptian Basin during these global warming events. 13 18 δ __________________________________________________________________________________
[1]
Ellen Thomas,et al.
Patterns and magnitude of deep sea carbonate dissolution during Eocene Thermal Maximum 2 and H2, Walvis Ridge, southeastern
,
2009
.
[2]
C. Dupuis,et al.
Environmental perturbation in the southern Tethys across the Paleocene/Eocene boundary (Dababiya, Egypt): Foraminiferal and clay mineral records
,
2006
.
[3]
R. Speijer,et al.
High-resolution ostracode records of the paleocene/eocene transition in the South Eastern Desert of Egypt — Taxonomy, biostratigraphy, paleoecology and paleobiogeography
,
2003
.
[4]
W. Berggren,et al.
The Dababiya Quarry Section: Lithostratigraphy, clay mineralogy, geochemistry and paleontology
,
2003
.
[5]
B. Schmitz,et al.
Stratigraphy of late Palaeocene events in the Middle East: implications for low‐ to middle‐latitude successions and correlations
,
2000,
Journal of the Geological Society.
[6]
C. King,et al.
Integrated stratigraphy of the Mont-Panisel borehole section (151E340), Ypresian (Early Eocene) of the Mons Basin, SW Belgium
,
1993
.