High performance optical systems using MIM based plasmonic structures

In this paper, the design of high performance optical systems based on MIM based plasmonic structures is proposed. Using a design methodology based on optimization functions, two novel components are proposed: demultiplexer and gas sensor. Further optimization of these plasmonic systems, high performance optical demultiplexer is maintained with a narrow line-width down to 4 nm with acceptable power level around 30%. On the other side, highly sensitive optical sensor is proposed with sensitivity up to 2000 nm and a limit of detection down to 10−4.

[1]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[2]  Mohamed A. Swillam,et al.  Efficient broadband energy transfer via momentum matching at hybrid junctions of guided-waves , 2012 .

[3]  Mohamed A. Swillam,et al.  Silicon plasmonic-integrated sensor , 2016, SPIE OPTO.

[4]  Raman Kashyap,et al.  Surface plasmon-polariton Mach-Zehnder refractive index sensor , 2008 .

[5]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[6]  M. A. Swillam,et al.  Feedback Effects in Plasmonic Slot Waveguides Examined Using a Closed Form Model , 2012, IEEE Photonics Technology Letters.

[7]  Dmitry V. Nesterenko,et al.  Waveguide-coupled surface plasmon resonance sensor structures: Fano lineshape engineering for ultrahigh-resolution sensing , 2015 .

[8]  G Borghs,et al.  Plasmon filters and resonators in metal-insulator-metal waveguides. , 2012, Optics express.

[9]  Matthew A. Cooper,et al.  Optical biosensors in drug discovery , 2002, Nature Reviews Drug Discovery.

[10]  K. Vahala,et al.  High-Q surface-plasmon-polariton whispering-gallery microcavity , 2009, Nature.

[11]  J. Homola Present and future of surface plasmon resonance biosensors , 2003, Analytical and bioanalytical chemistry.

[12]  Xueming Liu,et al.  Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime. , 2011, Optics express.

[13]  A. Pyayt Guiding Light in Electro-Optic Polymers , 2011 .

[14]  Mohamed A. Swillam,et al.  Hybrid electro-optic plasmonic modulators based on directional coupler switches , 2016 .

[15]  Osman S Ahmed,et al.  Realizing vertical light coupling and splitting in nano-plasmonic multilevel circuits. , 2013, Optics express.

[16]  Mohamed A. Swillam,et al.  Integrated Metal-Insulator-Metal Plasmonic Nano Resonator: an Analytical Approach , 2013 .

[17]  Young-Wan Choi,et al.  Triangular resonator based on surface plasmon resonance of attenuated reflection mirror , 2007 .

[18]  Mark L. Brongersma,et al.  Plasmonics: the next chip-scale technology , 2006 .

[19]  J. Homola Surface plasmon resonance based sensors , 2006 .

[20]  Qiaoqiang Gan,et al.  Vertical plasmonic mach-zehnder interferometer for sensitive optical sensing , 2009, 2010 IEEE Photinic Society's 23rd Annual Meeting.

[21]  W. Lukosz,et al.  Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing , 1991 .

[22]  Mohamed A. Swillam,et al.  Submicron omega-shaped plasmonic polarization rotator , 2014 .

[23]  Mohamed A. Swillam,et al.  Nanoscale highly selective plasmonic quad wavelength demultiplexer based on a metal-insulator-metal , 2015 .

[24]  J. Homola On the sensitivity of surface plasmon resonance sensors with spectral interrogation , 1997 .

[25]  Wei Pan,et al.  A plasmonic splitter based on slot cavity. , 2011, Optics express.

[26]  M. Ghadiri,et al.  A porous silicon-based optical interferometric biosensor. , 1997, Science.

[27]  Mohamed A. Swillam,et al.  Design, fabrication, and characterization of nanoscale plasmonic networks , 2011, Photonics North.

[28]  Mohamed A Swillam,et al.  Analysis and applications of 3D rectangular metallic waveguides. , 2010, Optics express.

[29]  Huaxiang Yi,et al.  Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. , 2011, Optics letters.

[30]  Mohamed A. Swillam,et al.  Nanoelectromechanical systems-based metal-insulator-metal plasmonics tunable filter , 2015 .

[31]  Zouheir Sekkat,et al.  Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors , 2015 .

[32]  Mohamed A. Swillam,et al.  Plasmonic silicon solar cells using titanium nitride: a comparative study , 2014 .

[33]  Mohamed A. Swillam,et al.  Nonlinear tuning techniques of plasmonic nano-filters , 2015 .

[34]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[35]  Byoungho Lee,et al.  Waveguide-based surface plasmon resonance sensor design , 2009, Organic Photonics + Electronics.

[36]  Mohamed A. Swillam,et al.  Submicron 1xN Ultra Wideband MIM Plasmonic Power Splitters , 2014, Journal of Lightwave Technology.

[37]  He-Zhou Wang,et al.  The transmission characteristics of surface plasmon polaritons in ring resonator. , 2009, Optics express.

[38]  Xu Guang Huang,et al.  A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators. , 2010, Optics express.

[39]  Mohamed H. El Sherif,et al.  Polarization-controlled excitation of multilevel plasmonic nano-circuits using single silicon nanowire. , 2012, Optics express.

[40]  Alexey V. Krasavin,et al.  Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths , 2011 .

[41]  Mohamed A. Swillam,et al.  Semi-analytical design methodology for large scale metal–insulator–metal waveguide networks , 2014 .

[42]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[43]  Hao Jiang,et al.  Effects of Coherent Interactions on the Sensing Characteristics of Near-Infrared Gold Nanorings , 2010 .

[44]  Mohamed A. Swillam,et al.  NEMS-based MIM plasmonics tunable filter , 2016, SPIE OPTO.

[45]  Zhiping Zhou,et al.  Wavelength filtering and demultiplexing structure based on aperture-coupled plasmonic slot cavities , 2011 .

[46]  Zouheir Sekkat,et al.  Extremely narrow resonances, giant sensitivity and field enhancement in low-loss waveguide sensors , 2016 .

[47]  Qihuang Gong,et al.  Compact and high-resolution plasmonic wavelength demultiplexers based on Fano interference. , 2011, Optics express.

[48]  Jin Tao,et al.  A subwavelength coupler-type MIM optical filter. , 2009, Optics express.

[49]  John A Rogers,et al.  Nanostructured plasmonic sensors. , 2008, Chemical reviews.