Research on global change scientific satellites

Global change now poses a severe threat to the survival and development of mankind. Large-scale, real-time, highly accurate Earth observation from space has become a key technology used to observe global change. China is one of the most influential countries affecting and being affected by global change, yet it has no scientific satellite for global change research so far. Developing global change scientific satellites not only would meet an important demand of China, but also would be a valuable contribution to the world. By analyzing the mechanisms of space-based observation of variables sensitive to global change, this paper explores the concept of global change scientific satellites, and proposes a series of global change scientific satellites to establish a scientific observation system for global environmental change monitoring from space.

[1]  Michael Buchwitz,et al.  A remote sensing technique for global monitoring of power plant CO 2 emissions from space and related applications , 2010 .

[2]  Ramakrishna R. Nemani,et al.  International Journal of Remote Sensing the Nightsat Mission Concept the Nightsat Mission Concept , 2022 .

[3]  Naoto Ebuchi,et al.  Evaluation of sea surface salinity observed by Aquarius and SMOS , 2012, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[4]  Arthur P. Cracknell,et al.  An overview of small satellites in remote sensing , 2008 .

[5]  R. Dubayah,et al.  Lidar Remote Sensing for Forestry , 2000, Journal of Forestry.

[6]  F. Rocca,et al.  Polarimetric SAR Tomography of Forested Areas: a Covariance Matching Approach , 2008 .

[7]  Rosenfeld,et al.  Suppression of rain and snow by urban and industrial air pollution , 2000, Science.

[8]  S. Liang,et al.  Urbanisation and health in China , 2010, The Lancet.

[9]  R. Reynolds,et al.  Use of salinity to improve ocean modeling , 1998 .

[10]  R. Fraser,et al.  The Relative Importance of Aerosol Scattering and Absorption in Remote Sensing , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Tatsuya Yokota,et al.  Global Concentrations of CO2 and CH4 Retrieved from GOSAT: First Preliminary Results , 2009 .

[12]  Lei Liping,et al.  A comparison of atmospheric CO 2 concentration GOSAT-based observations and model simulations , 2014 .

[13]  B. Bookhagen,et al.  Spatially variable response of Himalayan glaciers to climate change affected by debris cover , 2011 .

[14]  L. Ulander,et al.  BIOSAR 2007:Technical Assistance for the Development of Airborne SAR and Geophysical Measurements during the BioSAR 2007 Experiment , 2008 .

[15]  O. Edenhofer,et al.  Mitigation from a cross-sectoral perspective , 2007 .

[16]  Sander Houweling,et al.  Inverse modeling of CO2 sources and sinks using satellite data: a synthetic inter-comparison of measurement techniques and their performance as a function of space and time , 2003 .

[17]  Michael E. Schaepman,et al.  Algorithm theoretical basis document , 2009 .

[18]  S. Carpenter,et al.  Global Consequences of Land Use , 2005, Science.

[19]  David Crisp,et al.  The Orbiting Carbon Observatory (OCO) mission , 2004 .

[20]  Yong Xue,et al.  Retrieval of aerosol optical depth over bright land surfaces by coupling bidirectional reflectance distribution function model and aerosol retrieval model , 2012 .

[21]  Jacqueline Boutin,et al.  First Assessment of SMOS Data Over Open Ocean: Part II—Sea Surface Salinity , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[22]  John R. G. Townshend,et al.  The Global Climate Observing System (GCOS) , 1996 .

[23]  J. Means Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon , 1999 .

[24]  Sandra Englhart,et al.  Aboveground biomass retrieval in tropical forests — The potential of combined X- and L-band SAR data use , 2011 .

[25]  J. Dutoit The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) , 2007 .

[26]  Erkki Tomppo,et al.  A report to the food and agriculture organization of the united nations (FAO) in support of sampling study for National Forestry Resources Monitoring and Assessment (NAFORMA) in Tanzania , 2010 .

[27]  W. Hao,et al.  Validation and understanding of Moderate Resolution Imaging Spectroradiometer aerosol products (C5) using ground-based measurements from the handheld Sun photometer network in China , 2007 .

[28]  Gary S. E. Lagerloef,et al.  Sea Surface Salinity , 2014, Encyclopedia of Remote Sensing.

[29]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[30]  S. Lü,et al.  Validation and Development of a New Hailstone Formation Theory–Numerical Simulations of a Strong Hailstorm Occurring Over the Qinghai-Tibetan Plateau , 2007 .

[31]  Fernando Valladares,et al.  International Efforts on Global Change Research , 2008 .

[32]  Barry J. Huebert,et al.  Effects of Aerosol Particles on the Microphysics of Coastal Stratiform Clouds , 1995 .

[33]  Irena Hajnsek,et al.  Tropical-Forest-Parameter Estimation by Means of Pol-InSAR: The INDREX-II Campaign , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[34]  T. Esch,et al.  Monitoring urbanization in mega cities from space , 2012 .

[35]  Zhen Li,et al.  Movement estimate of the Dongkemadi Glacier on the Qinghai–Tibetan Plateau using L-band and C-band spaceborne SAR data , 2011 .

[36]  L. Thompson,et al.  Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings , 2012 .

[37]  S. Schneider,et al.  Climate Change 2007 Synthesis report , 2008 .

[38]  Rebecca Castano,et al.  A method for evaluating bias in global measurements of CO 2 total columns from space , 2011 .

[39]  W. Cohen,et al.  Estimates of forest canopy height and aboveground biomass using ICESat , 2005 .

[40]  Huadong Guo,et al.  Conceptual study of lunar-based SAR for global change monitoring , 2014, Science China Earth Sciences.

[41]  K. Seto,et al.  Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data , 2011 .

[42]  Lei Huang,et al.  Monitoring thickness and volume changes of the Dongkemadi Ice Field on the Qinghai-Tibetan Plateau (1969–2000) using Shuttle Radar Topography Mission and map data , 2012, Int. J. Digit. Earth.

[43]  Xiaohuan Xi,et al.  Wavelet Analysis for ICESat/GLAS Waveform Decomposition and Its Application in Average Tree Height Estimation , 2013, IEEE Geoscience and Remote Sensing Letters.

[44]  M. Brauer,et al.  Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application , 2010, Environmental health perspectives.

[45]  K. Ranson,et al.  Forest vertical structure from GLAS : An evaluation using LVIS and SRTM data , 2008 .

[46]  Peng Gong,et al.  Remote sensing of environmental change over China: A review , 2012 .

[47]  Sander Houweling,et al.  Evaluation of various observing systems for the global monitoring of CO2 surface fluxes , 2010 .

[48]  S Ward,et al.  The Earth Observation Handbook , 2008 .

[49]  John S. Kimball Earth Observation of Global Change: The Role of Satellite Remote Sensing in Monitoring the Global Environment , 2008 .

[50]  Michael A. Lefsky,et al.  Optimization of Geoscience Laser Altimeter System waveform metrics to support vegetation measurements , 2011 .