Dielectrics for Terahertz Metasurfaces: Material Selection and Fabrication Techniques

Manipulation of terahertz radiation opens new opportunities that underpin application areas in communication, security, material sensing, and characterization. Metasurfaces employed for terahertz manipulation of phase, amplitude, or polarization of terahertz waves have limitations in radiation efficiency which is attributed to losses in the materials constituting the devices. Metallic resonators‐based terahertz devices suffer from high ohmic losses, while dielectric substrates and spacers with high relative permittivity and loss tangent also reduce bandwidth and efficiency. To overcome these issues, a proper choice of low loss and low relative permittivity dielectric layers and substrates can improve field confinement and reduce dissipation. Alternatively, replacing metallic resonators with a moderate relative permittivity dielectric material that supports cavity mode resonances also reduces dissipation due to the absence of conduction current. Herein, an overview of dielectric materials employed as spacers and dielectric resonators is provided, and the fabrication methods employed to realize these devices at the terahertz frequency range are also presented. Material selection guidelines, material‐specific and application‐specific fabrication quality metrics are outlined, and new techniques are proposed.

[1]  Hua Zhong,et al.  Terahertz Spectroscopy and Imaging for Defense and Security Applications , 2007, Proceedings of the IEEE.

[2]  Christophe Fumeaux,et al.  Reflectarray antennas for terahertz communications , 2012 .

[3]  Ramon Gonzalo,et al.  USE of COC substrates for millimeter‐wave devices , 2015 .

[4]  J. McDonald,et al.  Stress in thermally annealed parylene films , 1992 .

[5]  Jean-François Lampin,et al.  Broadband ultra-low-loss mesh filters on flexible cyclic olefin copolymer films for terahertz applications , 2013 .

[6]  Emilien Peytavit,et al.  High-Gain Yagi–Uda Antenna on Cyclic Olefin Copolymer Substrate for 300-GHz Applications , 2014, IEEE Antennas and Wireless Propagation Letters.

[7]  Asok De,et al.  Dielectric resonator antennas: An application oriented survey , 2017 .

[8]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.

[9]  S. Maier,et al.  Terahertz All-Dielectric Magnetic Mirror Metasurfaces , 2016 .

[10]  Derek Abbott,et al.  Terahertz reflectarray as a polarizing beam splitter. , 2014, Optics express.

[11]  Yibin Ying,et al.  Mechanisms and applications of carbon nanotubes in terahertz devices: A review , 2018, Carbon.

[12]  B. Bousquet,et al.  Review of Terahertz Tomography Techniques , 2014 .

[13]  Derek Abbott,et al.  Plasmonic Resonance toward Terahertz Perfect Absorbers , 2014 .

[14]  A. F. J. Levi,et al.  Essential Classical Mechanics for Device Physics , 2016 .

[15]  B. Fischer,et al.  Terahertz Localized Surface Plasmon Resonances in Coaxial Microcavities , 2013 .

[16]  Willie J Padilla,et al.  Phototunable Dielectric Huygens' Metasurfaces , 2018, Advanced materials.

[17]  R. Caputo,et al.  Flexible terahertz wire grid polarizer with high extinction ratio and low loss. , 2016, Optics letters.

[18]  C. J. Carriere,et al.  Benzocyclobutenes: A New Class of High Performance Polymers , 1991 .

[19]  Dorota Temple,et al.  Wafer-Level Vacuum Packaging of Smart Sensors , 2016, Sensors.

[20]  D. Abbott,et al.  Metamaterials in the Terahertz Regime , 2009, IEEE Photonics Journal.

[21]  Jiaguang Han,et al.  All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting , 2018, Light: Science & Applications.

[22]  Yan Zhang,et al.  Metasurfaces in terahertz waveband , 2017 .

[23]  W. Withayachumnankul,et al.  Dielectric-resonator metasurfaces for broadband terahertz quarter- and half-wave mirrors. , 2018, Optics express.

[24]  I. Mehdi,et al.  A High-Resolution Imaging Radar at 580 GHz , 2008, IEEE Microwave and Wireless Components Letters.

[25]  Willie J. Padilla,et al.  All-dielectric metasurface absorbers for uncooled terahertz imaging , 2017 .

[26]  Haitao Liu,et al.  Broadband terahertz metamaterial absorber based on sectional asymmetric structures , 2016, Scientific Reports.

[27]  J. Aizpurua,et al.  Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators. , 2012, Optics express.

[28]  Markus Walther,et al.  Terahertz near-field imaging of dielectric resonators. , 2017, Optics express.

[29]  Bastian E. Rapp,et al.  Tacky cyclic olefin copolymer: a biocompatible bonding technique for the fabrication of microfluidic channels in COC. , 2016, Lab on a chip.

[30]  A. R. T. Nugraha,et al.  Giant Terahertz-Wave Absorption by Monolayer Graphene in a Total Internal Reflection Geometry , 2017 .

[31]  Zhen Tian,et al.  High‐Efficiency Dielectric Metasurfaces for Polarization‐Dependent Terahertz Wavefront Manipulation , 2018 .

[32]  I. Al-Naib,et al.  Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces , 2014, 1406.7194.

[33]  D. Jena,et al.  Broadband graphene terahertz modulators enabled by intraband transitions , 2012, Nature Communications.

[34]  G. Aeppli,et al.  Planar broadband and high absorption metamaterial using single nested resonator at terahertz frequencies. , 2014, Optics letters.

[35]  Wideband sub-THz half-wave plate using 3D-printed low-index metagratings with superwavelength lattice. , 2019, Optics express.

[36]  Shi-Wei Qu,et al.  Terahertz Reflecting and Transmitting Metasurfaces , 2017, Proceedings of the IEEE.

[37]  Derek Abbott,et al.  Polarization-dependent thin-film wire-grid reflectarray for terahertz waves , 2015 .

[38]  D. R. Chowdhury,et al.  Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales , 2015 .

[39]  P. Guillon,et al.  Dielectric resonators , 1988, Proceedings of the 42nd Annual Frequency Control Symposium, 1988..

[40]  Arnan Mitchell,et al.  Dielectric resonator nanoantennas at visible frequencies. , 2013, Optics express.

[41]  P. Kung,et al.  Review on Polarization Selective Terahertz Metamaterials: from Chiral Metamaterials to Stereometamaterials , 2017 .

[42]  Siu-Ming Yiu,et al.  An Efficient Flicker-Free FEC Coding Scheme for Dimmable Visible Light Communication Based on Polar Codes , 2016, IEEE Photonics Journal.

[43]  Kai Chang,et al.  Encyclopedia of RF and microwave engineering , 2005 .

[44]  Hugo O. Condori Quispe,et al.  Graphene–dielectric integrated terahertz metasurfaces , 2018, Semiconductor Science and Technology.

[45]  Minggui Wei,et al.  Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime , 2018 .

[46]  Jiafu Wang,et al.  Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances , 2014 .

[47]  Zhen Tian,et al.  A perfect metamaterial polarization rotator , 2013 .

[48]  Christophe Fumeaux,et al.  Experimental demonstration of reflectarray antennas at terahertz frequencies. , 2012, Optics express.

[49]  Y. Antar,et al.  A state‐of‐art review on performance improvement of dielectric resonator antennas , 2018 .

[50]  Li-Guo Zhu,et al.  All-dielectric metalens for terahertz wave imaging. , 2018, Optics express.

[51]  J. L. Costa-Krämer,et al.  Development and characterization of cyclic olefin copolymer thin films and their dielectric characteristics as CPW substrate by means of Terahertz Time Domain Spectroscopy , 2018 .

[52]  Mohd Haizal Jamaluddin,et al.  Design, Fabrication and Characterization of a Dielectric Resonator Antenna Reflectarray in Ka-Band , 2010 .

[53]  M. Bonn,et al.  Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas. , 2010, Optics express.

[54]  A. Biswas,et al.  Dielectric resonator array antenna for triple band WLAN applications with enhanced gain , 2018, International Journal of RF and Microwave Computer-Aided Engineering.

[55]  M. Gottlieb,et al.  Crystallization of PDMS: The effect of physical and chemical crosslinks , 2002 .

[56]  Yunqing Chen,et al.  THz wave sensing for petroleum industrial applications , 2007 .

[57]  Derek Abbott,et al.  Ultrabroadband Plasmonic Absorber for Terahertz Waves , 2015 .

[58]  Peter Uhd Jepsen,et al.  Bendable, low-loss Topas fibers for the terahertz frequency range. , 2009, Optics express.

[59]  Cyril C. Renaud,et al.  Advances in terahertz communications accelerated by photonics , 2016, Nature Photonics.

[60]  Derek Abbott,et al.  Terahertz Reflectarrays and Nonuniform Metasurfaces , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[61]  Andrew J. Gatesman,et al.  An anti-reflection coating for silicon optics at terahertz frequencies , 2000 .

[62]  Qi Liu,et al.  Eutectic and solid-state wafer bonding of silicon with gold , 2012 .

[63]  Tengfei Wu,et al.  Single-walled carbon nanotubes assisted THz silicon grating modulator. , 2018, Optics express.

[64]  G. Ducournau,et al.  Thin film transmission lines using cyclic olefin copolymer , 2011, 2011 International Conference on Infrared, Millimeter, and Terahertz Waves.

[65]  Makoto Nakajima,et al.  Trapping waves with terahertz metamaterial absorber based on isotropic Mie resonators. , 2015, Optics letters.

[66]  Withawat Withayachumnankul,et al.  Recent Progress in Terahertz Metasurfaces , 2017 .

[67]  Tadao Nagatsuma,et al.  A Review on Terahertz Communications Research , 2011 .

[68]  H.B. Wallace,et al.  Standoff Detection of Weapons and Contraband in the 100 GHz to 1 THz Region , 2007, IEEE Transactions on Antennas and Propagation.

[69]  Yan Zhang,et al.  Ultra-wide band reflective metamaterial wave plates for terahertz waves , 2017 .

[70]  Yan Zhang,et al.  Extreme terahertz science , 2017, Nature Photonics.

[71]  Din Ping Tsai,et al.  Advances in optical metasurfaces: fabrication and applications [Invited]. , 2018, Optics express.

[72]  S. Xiao,et al.  All‐Dielectric Meta‐Reflectarray for Efficient Control of Visible Light , 2018 .

[73]  L. Minkevičius,et al.  Terahertz multilevel phase Fresnel lenses fabricated by laser patterning of silicon. , 2017, Optics letters.

[74]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[75]  A. A. Konovko,et al.  Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids , 2018, Progress in Quantum Electronics.

[76]  Joo-Hiuk Son,et al.  Terahertz electromagnetic interactions with biological matter and their applications , 2009 .

[77]  Z. Jacob,et al.  All-dielectric metamaterials. , 2016, Nature nanotechnology.

[78]  N. Llombart,et al.  Penetrating 3-D Imaging at 4- and 25-m Range Using a Submillimeter-Wave Radar , 2008, IEEE Transactions on Microwave Theory and Techniques.

[79]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[80]  Chennupati Jagadish,et al.  An Ultrafast Switchable Terahertz Polarization Modulator Based on III-V Semiconductor Nanowires. , 2017, Nano letters.

[81]  T. Nagatsuma,et al.  Present and Future of Terahertz Communications , 2011, IEEE Transactions on Terahertz Science and Technology.

[82]  D. R. Chowdhury,et al.  Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction , 2013, Science.

[83]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[84]  Brent M. Polishak,et al.  Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials , 2011 .

[85]  Jinghua Teng,et al.  Direct Optical Tuning of the Terahertz Plasmonic Response of InSb Subwavelength Gratings , 2013 .

[86]  R. Caputo,et al.  Broad- and Narrow-Line Terahertz Filtering in Frequency-Selective Surfaces Patterned on Thin Low-Loss Polymer Substrates , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[87]  B. Fischer,et al.  Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy. , 2002, Biopolymers.

[88]  Derek Abbott,et al.  Doped polymer for low-loss dielectric material in the terahertz range , 2015 .

[89]  Derek Abbott,et al.  Tutorial: Terahertz beamforming, from concepts to realizations , 2018 .

[90]  Hsin Her Yu,et al.  Surface modification of cyclic olefin copolymer substrate by oxygen plasma treatment , 2008 .

[91]  N. Zerounian,et al.  Complex permittivity characterization of benzocyclobutene for terahertz applications , 2008 .

[92]  R. Averitt,et al.  Optically Modulated Ultra-Broadband All-Silicon Metamaterial Terahertz Absorbers , 2019, ACS Photonics.

[93]  Derek Abbott,et al.  Dielectric Resonator Reflectarray as High-Efficiency Nonuniform Terahertz Metasurface , 2016 .

[94]  M. Koch,et al.  Terahertz spectroscopy and imaging – Modern techniques and applications , 2011 .

[95]  Yan Zhang,et al.  Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces , 2019, Light, science & applications.

[96]  T. Lim,et al.  135-GHz Micromachined On-Chip Antenna and Antenna Array , 2012, IEEE Transactions on Antennas and Propagation.

[97]  A. Wutzler,et al.  Surface modification of cycloolefinic copolymers for optimization of the adhesion to metals , 2004 .

[98]  Pedro S. Nunes,et al.  Cyclic olefin polymers: emerging materials for lab-on-a-chip applications , 2010 .

[99]  K. Meng,et al.  A high-performance broadband terahertz absorber based on sawtooth-shape doped-silicon , 2016 .

[100]  Laura M. Herz,et al.  An ultrafast carbon nanotube terahertz polarisation modulator , 2014 .

[101]  Jinghua Teng,et al.  Broadband Terahertz Plasmonic Response of Touching InSb Disks , 2012, Advanced materials.

[102]  Xiaomei Yu,et al.  Transmissive terahertz metalens with full phase control based on a dielectric metasurface. , 2017, Optics letters.

[103]  Z. Rakočević,et al.  Changes of properties of cured and uncured disiloxane bisbenzocyclobutene thin films under irradiation , 2013 .

[104]  Derek Abbott,et al.  Second-Order Terahertz Bandpass Frequency Selective Surface With Miniaturized Elements , 2015, IEEE Transactions on Terahertz Science and Technology.

[105]  Jun Gao,et al.  Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression , 2017, Scientific Reports.

[106]  Derek Abbott,et al.  Ultrabroadband reflective polarization convertor for terahertz waves , 2014 .

[107]  N. Jokerst,et al.  Tuned permeability in terahertz split-ring resonators for devices and sensors , 2007 .

[108]  Fei Fan,et al.  Artificial high birefringence in all-dielectric gradient grating for broadband terahertz waves , 2016, Scientific Reports.

[109]  Mei-hui Yang,et al.  Structural effects on the thermal properties of PDPS/PDMS copolymers , 1993 .

[110]  P. Genevet,et al.  Recent advances in planar optics: from plasmonic to dielectric metasurfaces , 2017 .

[111]  Lei Zhou,et al.  High‐Efficiency Metasurfaces: Principles, Realizations, and Applications , 2018, Advanced Optical Materials.

[112]  Lijuan Xie,et al.  High-performance terahertz wave absorbers made of silicon-based metamaterials , 2015 .

[113]  R. Henderson,et al.  Broadband Terahertz Refraction Index Dispersion and Loss of Polymeric Dielectric Substrate and Packaging Materials , 2017 .

[114]  Jiaguang Han,et al.  Antireflection-assisted all-dielectric terahertz metamaterial polarization converter , 2018, Applied Physics Letters.

[115]  Abul K. Azad,et al.  Hybrid metasurface for ultra-broadband terahertz modulation , 2014 .

[116]  Arnan Mitchell,et al.  Spectral and angular characteristics of dielectric resonator metasurface at optical frequencies , 2014 .

[117]  Derek Abbott,et al.  Terahertz Magnetic Mirror Realized with Dielectric Resonator Antennas , 2015, Advanced materials.

[118]  Weili Zhang,et al.  Monolayer graphene sensing enabled by the strong Fano-resonant metasurface. , 2016, Nanoscale.

[119]  Cunlin Zhang,et al.  Detection and identification of selected alcohols using terahertz time-domain spectroscopy , 2011 .