Computability of Convex Sets (Extended Abstract)

We investigate computability of convex sets restricted to rational inputs. Several quite different algorithmic characterizations are presented, like the existence of effective approximations by polygons or effective line intersection tests. We also consider approximate computations of the n-fold characteristic function for several natural classes of convex sets. This yields many different concrete examples of (1, n)-computable sets.

[1]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[2]  A. Brøndsted An Introduction to Convex Polytopes , 1982 .

[3]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[4]  Anil Nerode,et al.  On Extreme Points of Convex Compact Turing Located Set , 1994, LFCS.

[5]  William I. Gasarch,et al.  Bounded queries in recursion theory: a survey , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[6]  Frank Stephan,et al.  Approximable Sets , 1995, Inf. Comput..

[7]  David Haussler,et al.  Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.

[8]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[9]  John Gill,et al.  Terse, Superterse, and Verbose Sets , 1993, Inf. Comput..

[10]  Konrad Jacobs Selecta Mathematica III , 1969 .

[11]  École d'été de probabilités de Saint-Flour,et al.  École d'Été de Probabilités de Saint-Flour XII - 1982 , 1984 .

[12]  Richard M. Dudley,et al.  Some special vapnik-chervonenkis classes , 1981, Discret. Math..

[13]  K. Jacobs,et al.  Extremalpunkte konvexer Mengen , 1971 .

[14]  Ker-I Ko,et al.  Complexity Theory of Real Functions , 1991, Progress in Theoretical Computer Science.

[15]  P. Assouad Densité et dimension , 1983 .

[16]  R. Dudley A course on empirical processes , 1984 .

[17]  Vikraman Arvind,et al.  Geometric Sets of Low Information Content , 1996, Theor. Comput. Sci..

[18]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.