Computability of Convex Sets (Extended Abstract)
暂无分享,去创建一个
[1] David Haussler,et al. ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..
[2] A. Brøndsted. An Introduction to Convex Polytopes , 1982 .
[3] Vladimir Vapnik,et al. Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .
[4] Anil Nerode,et al. On Extreme Points of Convex Compact Turing Located Set , 1994, LFCS.
[5] William I. Gasarch,et al. Bounded queries in recursion theory: a survey , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.
[6] Frank Stephan,et al. Approximable Sets , 1995, Inf. Comput..
[7] David Haussler,et al. Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.
[8] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[9] John Gill,et al. Terse, Superterse, and Verbose Sets , 1993, Inf. Comput..
[10] Konrad Jacobs. Selecta Mathematica III , 1969 .
[11] École d'été de probabilités de Saint-Flour,et al. École d'Été de Probabilités de Saint-Flour XII - 1982 , 1984 .
[12] Richard M. Dudley,et al. Some special vapnik-chervonenkis classes , 1981, Discret. Math..
[13] K. Jacobs,et al. Extremalpunkte konvexer Mengen , 1971 .
[14] Ker-I Ko,et al. Complexity Theory of Real Functions , 1991, Progress in Theoretical Computer Science.
[15] P. Assouad. Densité et dimension , 1983 .
[16] R. Dudley. A course on empirical processes , 1984 .
[17] Vikraman Arvind,et al. Geometric Sets of Low Information Content , 1996, Theor. Comput. Sci..
[18] Marian Boykan Pour-El,et al. Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.