Explosion hazards from lithium-ion battery vent gas

[1]  Y. Fernandes,et al.  Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery , 2018, Journal of Power Sources.

[2]  M. Henriksen,et al.  Simulation of burning velocities in gases vented from thermal run-a-way lithium ion batteries , 2017 .

[3]  Per Blomqvist,et al.  Toxic fluoride gas emissions from lithium-ion battery fires , 2017, Scientific Reports.

[4]  P. Glaude,et al.  Prediction of Flammability Limits of Gas Mixtures Containing Inert Gases Under Variable Temperature and Pressure Conditions , 2017 .

[5]  Francis R. Kronz,et al.  Methane-induced explosions in vented enclosures , 2017 .

[6]  Viktor Hacker,et al.  Holistic methodology for characterisation of the thermally induced failure of commercially available 18650 lithium ion cells , 2017 .

[7]  Feixiang Wu,et al.  Conversion cathodes for rechargeable lithium and lithium-ion batteries , 2017 .

[8]  Xinping Qiu,et al.  Toxicity, a serious concern of thermal runaway from commercial Li-ion battery ☆ , 2016 .

[9]  Yan‐Bing He,et al.  Influence of over-discharge on the lifetime and performance of LiFePO4/graphite batteries , 2016 .

[10]  Orlando J. Ugarte,et al.  A computational platform for gas explosion venting , 2016 .

[11]  Zhiyong Liang,et al.  Overcharge failure investigation of lithium-ion batteries , 2015 .

[12]  Viktor Hacker,et al.  Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes – impact of state of charge and overcharge , 2015 .

[13]  D. Goodwin,et al.  Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Version 2.2.0 , 2015 .

[14]  Zheng Chen On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure , 2015 .

[15]  Susan L. Rose-Pehrsson,et al.  Physical and chemical analysis of lithium-ion battery cell-to-cell failure events inside custom fire chamber , 2015 .

[16]  Heping Zhang,et al.  An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter , 2015 .

[17]  Per Blomqvist,et al.  Characteristics of lithium-ion batteries during fire tests , 2014 .

[18]  Vijay Somandepalli,et al.  Quantification of Combustion Hazards of Thermal Runaway Failures in Lithium-Ion Batteries , 2014 .

[19]  Viktor Hacker,et al.  Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes , 2014 .

[20]  M. Mannan,et al.  Lower Flammability Limits of Hydrogen and Light Hydrocarbons at Subatmospheric Pressures , 2013 .

[21]  P. Jansohn Modern gas turbine systems , 2013 .

[22]  M. Terpstra Flammability limits of hydrogen-diluent mixtures in air , 2012 .

[23]  Eric L. Petersen,et al.  Laminar Flame Speed and Ignition Delay Time Data for the Kinetic Modeling of Hydrogen and Syngas Fuel Blends , 2012 .

[24]  I. Zlochower Experimental flammability limits and associated theoretical flame temperatures as a tool for predicting the temperature dependence of these limits. , 2012, Journal of loss prevention in the process industries.

[25]  F. Zhao Inert Gas Dilution Effect on the Flammability Limits of Hydrocarbon Mixtures , 2012 .

[26]  M. Morcrette,et al.  Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry , 2012 .

[27]  Tingguang Ma A thermal theory for estimating the flammability limits of a mixture , 2011 .

[28]  P. Glaude,et al.  Measurements of Laminar Flame Velocity for Components of Natural Gas , 2011 .

[29]  Andrew Smallbone,et al.  Laminar flame speeds of C5 to C8 n-alkanes at elevated pressures: Experimental determination, fuel similarity, and stretch sensitivity , 2011 .

[30]  E. Peter Roth,et al.  Abuse Response of 18650 Li-Ion Cells with Different Cathodes Using EC:EMC/LiPF6 and EC:PC:DMC/LiPF6 Electrolytes , 2008 .

[31]  D. Abraham,et al.  Diagnostic examination of thermally abused high-power lithium-ion cells , 2006 .

[32]  James G. Quintiere,et al.  Fundamentals of Fire Phenomena , 2006 .

[33]  M. Mannan,et al.  Evaluation of lower flammability limits of fuel-air-diluent mixtures using calculated adiabatic flame temperatures. , 2006, Journal of hazardous materials.

[34]  Ganesan Nagasubramanian,et al.  Effects of additives on thermal stability of Li ion cells , 2005 .

[35]  Yuichi Sato,et al.  Overcharge reaction of lithium-ion batteries , 2005 .

[36]  Xuejie Huang,et al.  Gas evolution behaviors for several cathode materials in lithium-ion batteries , 2005 .

[37]  C. Sung,et al.  Determination of laminar flame speeds using digital particle image velocimetry: Binary Fuel blends of ethylene, n-Butane, and toluene , 2002 .

[38]  Katsuhito Takei,et al.  Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell , 1999 .

[39]  W. C. Harrison,et al.  Combustion of Hydrogen at High Concentrations. Including the Effect of Obstacles , 1983 .