A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth.

We describe the apparatus of a dark-line two-dimensional (2D) magneto-optical trap (MOT) of (85)Rb cold atoms with high optical depth (OD). Different from the conventional configuration, two (of three) pairs of trapping laser beams in our 2D MOT setup do not follow the symmetry axes of the quadrupole magnetic field: they are aligned with 45° angles to the longitudinal axis. Two orthogonal repumping laser beams have a dark-line volume in the longitudinal axis at their cross over. With a total trapping laser power of 40 mW and repumping laser power of 18 mW, we obtain an atomic OD up to 160 in an electromagnetically induced transparency (EIT) scheme, which corresponds to an atomic-density-length product NL = 2.05 × 10(15) m(-2). In a closed two-state system, the OD can become as large as more than 600. Our 2D MOT configuration allows full optical access of the atoms in its longitudinal direction without interfering with the trapping and repumping laser beams spatially. Moreover, the zero magnetic field along the longitudinal axis allows the cold atoms maintain a long ground-state coherence time without switching off the MOT magnetic field, which makes it possible to operate the MOT at a high repetition rate and a high duty cycle. Our 2D MOT is ideal for atomic-ensemble-based quantum optics applications, such as EIT, entangled photon pair generation, optical quantum memory, and quantum information processing.

[1]  T. Tiecke,et al.  High-flux two-dimensional magneto-optical-trap source for cold lithium atoms , 2009 .

[2]  S. Harris,et al.  Generation of paired photons with controllable waveforms. , 2005, Physical review letters.

[3]  S. Harris,et al.  Light speed reduction to 17 metres per second in an ultracold atomic gas , 1999, Nature.

[4]  R.J.C. Spreeuw,et al.  The Two-Dimensional Magneto-optical Trap as a Source of Slow Atoms , 1998 .

[5]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[6]  J Laurat,et al.  Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling. , 2007, Physical review letters.

[7]  Andrew C. Wilson,et al.  A simple laser cooling and trapping apparatus for undergraduate laboratories , 2002 .

[8]  Y. O. Dudin,et al.  A quantum memory with telecom-wavelength conversion , 2010 .

[9]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[10]  M. Lukin,et al.  Universal approach to optimal photon storage in atomic media. , 2006, Physical review letters.

[11]  H. Kimble,et al.  Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks , 2007, Science.

[12]  M. Kasevich,et al.  Measurement of the Earth's Gravity Gradient with an Atom Interferometer-Based Gravity Gradiometer , 1998 .

[13]  S. Du,et al.  Narrowband biphoton generation near atomic resonance , 2008, 0804.3981.

[14]  M. Squires High repetition rate Bose-Einstein condensate production in a compact, transportable vacuum system , 2008 .

[15]  Chen,et al.  Nonlinear spectroscopy of cold atoms in a spontaneous-force optical trap. , 1991, Physical review letters.

[16]  S. Du,et al.  Four-wave mixing and biphoton generation in a two-level system. , 2007, Physical review letters.

[17]  D. Matsukevich,et al.  Entanglement of a photon and a collective atomic excitation. , 2005, Physical review letters.

[18]  M. Inguscio,et al.  Intense slow beams of bosonic potassium isotopes , 2005, cond-mat/0511113.

[19]  Hui Yan,et al.  Generation of narrow-band hyperentangled nondegenerate paired photons. , 2011, Physical review letters.

[20]  D. Matsukevich,et al.  Quantum telecommunication with atomic ensembles , 2007 .

[21]  Shengwang Du,et al.  Subnatural linewidth biphotons with controllable temporal length. , 2008, Physical review letters.

[22]  Walker,et al.  Excited-state collisions of trapped 85Rb atoms. , 1992, Physical review letters.

[23]  S. Harris,et al.  Generation of narrow-bandwidth paired photons: use of a single driving laser. , 2006, Physical review letters.

[24]  Shengwang Du,et al.  Modulation and Measurement of Time-Energy Entangled Photons , 2009 .

[25]  Vanderlei Salvador Bagnato,et al.  Experiments and theory in cold and ultracold collisions , 1999 .

[26]  S. Harris,et al.  Electromagnetically Induced Transparency , 1991, QELS '97., Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[27]  H J Kimble,et al.  Single-photon generation from stored excitation in an atomic ensemble. , 2004, Physical review letters.

[28]  S. Harris,et al.  Frequency mixing using electromagnetically induced transparency in cold atoms. , 2004, Physical review letters.

[29]  S. Stenholm,et al.  Laser cooling and trapping , 1988 .

[30]  Gallagher,et al.  Collisional losses from a light-force atom trap. , 1989, Physical review letters.

[31]  H. J. Kimble,et al.  Measurement-induced entanglement for excitation stored in remote atomic ensembles , 2005, Nature.

[32]  D. Matsukevich,et al.  Storage and retrieval of single photons transmitted between remote quantum memories , 2005, Nature.

[33]  Shanchao Zhang,et al.  Optical storage with electromagnetically induced transparency in a dense cold atomic ensemble. , 2011, Optics letters.

[34]  Shanchao Zhang,et al.  Optical Precursor of a Single Photon , 2011 .

[35]  Robert Löw,et al.  Intense source of cold Rb atoms from a pure two-dimensional magneto-optical trap , 2002 .

[36]  Z. Dutton,et al.  Observation of coherent optical information storage in an atomic medium using halted light pulses , 2001, Nature.

[37]  H. Kimble,et al.  Entanglement of spin waves among four quantum memories , 2010, Nature.

[38]  L. Hau,et al.  Nonlinear Optics at Low Light Levels , 1999 .

[39]  Ying-Cheng Chen,et al.  Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density. , 2008, Optics express.

[40]  Chu,et al.  Atom funnel for the production of a slow, high-density atomic beam. , 1990, Physical review letters.

[41]  W. Phillips Nobel Lecture: Laser cooling and trapping of neutral atoms , 1998 .

[42]  Pritchard,et al.  High densities of cold atoms in a dark spontaneous-force optical trap. , 1993, Physical review letters.

[43]  C. cohen-tannoudji,et al.  Laser cooling below the Doppler limit by polarization gradients: simple theoretical models , 1989 .

[44]  Chang-Yi Wang,et al.  Manipulating the retrieved frequency and polarization of stored light pulses. , 2006, Optics letters.

[45]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[46]  H. Kimble,et al.  Control of decoherence in the generation of photon pairs from atomic ensembles , 2005, quant-ph/0507127.

[47]  Chu,et al.  Trapping of neutral sodium atoms with radiation pressure. , 1987, Physical review letters.

[48]  Chu,et al.  Atomic interferometry using stimulated Raman transitions. , 1991, Physical review letters.

[49]  Shanchao Zhang,et al.  Shaping biphoton temporal waveforms with modulated classical fields. , 2010, Physical review letters.

[50]  S. E. Harris,et al.  Low-light-level nonlinear optics with slow light , 2003 .

[51]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[52]  J. Laurat,et al.  Mapping photonic entanglement into and out of a quantum memory , 2007, Nature.

[53]  D. Matsukevich,et al.  Entanglement of remote atomic qubits. , 2006, Physical review letters.

[54]  A. D. Boozer,et al.  Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles , 2003, Nature.

[55]  Shengwang Du,et al.  Electro-optic modulation of single photons. , 2008, Physical review letters.