A review of deep learning applications in human genomics using next-generation sequencing data

[1]  Carlos Loucera,et al.  Integrating pathway knowledge with deep neural networks to reduce the dimensionality in single-cell RNA-seq data , 2021, BioData Mining.

[2]  Xiao-Meng Zhang,et al.  Graph Neural Networks and Their Current Applications in Bioinformatics , 2021, Frontiers in Genetics.

[3]  Iqbal H. Sarker Machine Learning: Algorithms, Real-World Applications and Research Directions , 2021, SN Computer Science.

[4]  Karsten M. Borgwardt,et al.  Biological network analysis with deep learning , 2020, Briefings Bioinform..

[5]  Clayton Barham,et al.  Interpretation of deep learning in genomics and epigenomics , 2020, Briefings Bioinform..

[6]  Chenguang Zhu,et al.  Deep learning in natural language processing , 2021, Machine Reading Comprehension.

[7]  C. Wang,et al.  Machine learning in additive manufacturing: State-of-the-art and perspectives , 2020, Additive Manufacturing.

[8]  Jiangning Song,et al.  DeepBL: a deep learning-based approach for in silico discovery of beta-lactamases. , 2020, Briefings in bioinformatics.

[9]  Jianzhu Ma,et al.  Predicting Drug Response and Synergy Using a Deep Learning Model of Human Cancer Cells. , 2020, Cancer cell.

[10]  B. Guldbrandtsen,et al.  The application of deep learning for the classification of correct and incorrect SNP genotypes from whole-genome DNA sequencing pipelines , 2020, Journal of Applied Genetics.

[11]  A. Akalin,et al.  Deep learning for genomics using Janggu , 2020, Nature Communications.

[12]  Lefteris Koumakis,et al.  Deep learning models in genomics; are we there yet? , 2020, Computational and structural biotechnology journal.

[13]  Marta R. Hidalgo,et al.  Mechanistic models of signaling pathways deconvolute the glioblastoma single-cell functional landscape , 2020, NAR cancer.

[14]  J. Shendure,et al.  Predicting mRNA Abundance Directly from Genomic Sequence Using Deep Convolutional Neural Networks. , 2020, Cell reports.

[15]  Maha A. Thafar,et al.  Splice2Deep: An ensemble of deep convolutional neural networks for improved splice site prediction in genomic DNA , 2020, Gene: X.

[16]  Mingyao Li,et al.  Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis , 2020, Nature Communications.

[17]  D. Chicco,et al.  The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation , 2020, BMC Genomics.

[18]  V. Verendel,et al.  Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure , 2019, Nature Communications.

[19]  Ekta Khurana,et al.  A deep learning approach to predict the impact of non-coding sequence variants on 3D chromatin structure , 2019, bioRxiv.

[20]  Tim Kacprowski,et al.  DeepWAS: Multivariate genotype-phenotype associations by directly integrating regulatory information using deep learning , 2020, PLoS Comput. Biol..

[21]  Miguel Rocha,et al.  Deep learning for drug response prediction in cancer , 2020, Briefings Bioinform..

[22]  Aditya Singh,et al.  Intelli-NGS: Intelligent NGS, a deep neural network-based artificial intelligence to delineate good and bad variant calls from IonTorrent sequencer data , 2019, bioRxiv.

[23]  Aristotelis Tsirigos,et al.  A Deep Learning Framework for Predicting Response to Therapy in Cancer. , 2019, Cell reports.

[24]  Lizhen Shi,et al.  Computational Strategies for Scalable Genomics Analysis , 2019, Genes.

[25]  Seokho Kang,et al.  Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation , 2019, Journal of Cheminformatics.

[26]  Yaoqi Zhou,et al.  RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning , 2019, Nature Communications.

[27]  Carlos Torroja,et al.  Digitaldlsorter: Deep-Learning on scRNA-Seq to Deconvolute Gene Expression Data , 2019, Front. Genet..

[28]  G. Gupta,et al.  DAVI: Deep learning-based tool for alignment and single nucleotide variant identification , 2019, bioRxiv.

[29]  E. Schadt,et al.  Functional interpretation of genetic variants using deep learning predicts impact on chromatin accessibility and histone modification , 2019, Nucleic acids research.

[30]  Alexander G. B. Grønning,et al.  DeepCLIP: predicting the effect of mutations on protein–RNA binding with deep learning , 2019, bioRxiv.

[31]  Miguel Pérez-Enciso,et al.  A Guide on Deep Learning for Complex Trait Genomic Prediction , 2019, Genes.

[32]  Fabian J Theis,et al.  Deep learning: new computational modelling techniques for genomics , 2019, Nature Reviews Genetics.

[33]  Yong Yu,et al.  A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures , 2019, Neural Computation.

[34]  Georg Seelig,et al.  A Deep Neural Network for Predicting and Engineering Alternative Polyadenylation , 2019, Cell.

[35]  K. Kohut,et al.  The Changing Role of the Genetic Counsellor in the Genomics Era , 2019, Current Genetic Medicine Reports.

[36]  Jun Cheng,et al.  The Kipoi repository accelerates community exchange and reuse of predictive models for genomics , 2019, Nature Biotechnology.

[37]  Vladislav Lysenkov,et al.  Introducing deep learning -based methods into the variant calling analysis pipeline , 2019 .

[38]  Asif Ahmed Neloy,et al.  Machine Learning based Health Prediction System using IBM Cloud as PaaS , 2019, 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI).

[39]  Evan M. Cofer,et al.  Selene: a PyTorch-based deep learning library for sequence data , 2019, Nature Methods.

[40]  Yingnian Wu,et al.  Deep-learning augmented RNA-seq analysis of transcript splicing , 2019, Nature Methods.

[41]  W. Wong,et al.  DeepTACT: predicting 3D chromatin contacts via bootstrapping deep learning , 2019, Nucleic acids research.

[42]  Heather L. Mulder,et al.  Analysis of error profiles in deep next-generation sequencing data , 2019, Genome Biology.

[43]  Yann LeCun,et al.  1.1 Deep Learning Hardware: Past, Present, and Future , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).

[44]  M. Schatz,et al.  A multi-task convolutional deep neural network for variant calling in single molecule sequencing , 2019, Nature Communications.

[45]  Phillip M Cheng,et al.  Artificial Intelligence for Medical Image Analysis: A Guide for Authors and Reviewers. , 2019, AJR. American journal of roentgenology.

[46]  Yufeng Wu,et al.  DeepSV: accurate calling of genomic deletions from high-throughput sequencing data using deep convolutional neural network , 2019, BMC Bioinformatics.

[47]  Wenyu Wang,et al.  Making Sense of the Epigenome Using Data Integration Approaches , 2019, Front. Pharmacol..

[48]  Hsiao-Chun Wu,et al.  DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network , 2019, PLoS Comput. Biol..

[49]  David G. Knowles,et al.  Predicting Splicing from Primary Sequence with Deep Learning , 2019, Cell.

[50]  Peter M. Krawitz,et al.  Identifying facial phenotypes of genetic disorders using deep learning , 2019, Nature Medicine.

[51]  R. Jiang,et al.  DeepHistone: a deep learning approach to predicting histone modifications , 2018, BMC Genom..

[52]  Vladimir B. Bajic,et al.  DeepGSR: an optimized deep-learning structure for the recognition of genomic signals and regions , 2018, Bioinform..

[53]  Michael C. Schatz,et al.  Clairvoyante: a multi-task convolutional deep neural network for variant calling in Single Molecule Sequencing , 2018, bioRxiv.

[54]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[55]  Hamed Asadi,et al.  Peering Into the Black Box of Artificial Intelligence: Evaluation Metrics of Machine Learning Methods. , 2019, AJR. American journal of roentgenology.

[56]  Ashvin Bashyam,et al.  Deep learning for genomics , 2018, Nature Genetics.

[57]  Borut Peterlin,et al.  PEDIA: prioritization of exome data by image analysis , 2018, Genetics in Medicine.

[58]  M. Huss,et al.  A primer on deep learning in genomics , 2018, Nature Genetics.

[59]  De-Shuang Huang,et al.  Recurrent Neural Network for Predicting Transcription Factor Binding Sites , 2018, Scientific Reports.

[60]  Gui-Bin Bian,et al.  Performance Analysis of Google Colaboratory as a Tool for Accelerating Deep Learning Applications , 2018, IEEE Access.

[61]  Thomas Colthurst,et al.  A universal SNP and small-indel variant caller using deep neural networks , 2018, Nature Biotechnology.

[62]  Song He,et al.  Deep learning-based transcriptome data classification for drug-target interaction prediction , 2018, BMC Genomics.

[63]  Avanti Shrikumar,et al.  Deciphering regulatory DNA sequences and noncoding genetic variants using neural network models of massively parallel reporter assays , 2018, bioRxiv.

[64]  Luis Tobalina,et al.  How to find the right drug for each patient? Advances and challenges in pharmacogenomics , 2018, Current opinion in systems biology.

[65]  Jörg Hakenberg,et al.  Predicting the clinical impact of human mutation with deep neural networks , 2018, Nature Genetics.

[66]  Günter Mayer,et al.  Systematic evaluation of error rates and causes in short samples in next-generation sequencing , 2018, Scientific Reports.

[67]  Bharanidharan Devarajan,et al.  Performance assessment of variant calling pipelines using human whole exome sequencing and simulated data , 2018, BMC Bioinformatics.

[68]  Wesley De Neve,et al.  SpliceRover: interpretable convolutional neural networks for improved splice site prediction , 2018, Bioinform..

[69]  Yong Wang,et al.  Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network , 2018, bioRxiv.

[70]  Yufei Huang,et al.  Predicting drug response of tumors from integrated genomic profiles by deep neural networks , 2018, BMC Medical Genomics.

[71]  Chandra L. Theesfeld,et al.  Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk , 2018, Nature Genetics.

[72]  R. Jiang,et al.  Prediction of enhancer-promoter interactions via natural language processing , 2018, BMC Genomics.

[73]  Maxat Kulmanov,et al.  DeepPVP: phenotype-based prioritization of causative variants using deep learning , 2018, BMC Bioinformatics.

[74]  M. DePristo,et al.  Deep learning of genomic variation and regulatory network data. , 2018, Human molecular genetics.

[75]  Brendan J. Frey,et al.  COSSMO: predicting competitive alternative splice site selection using deep learning , 2018, bioRxiv.

[76]  Zhongming Zhao,et al.  Gene2vec: distributed representation of genes based on co-expression , 2018, bioRxiv.

[77]  A. Badnjević,et al.  Application of Neural Networks for classification of Patau, Edwards, Down, Turner and Klinefelter Syndrome based on first trimester maternal serum screening data, ultrasonographic findings and patient demographics , 2018, BMC Medical Genomics.

[78]  Annalisa Marsico,et al.  pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks , 2018, Bioinform..

[79]  Haohan Wang,et al.  Deep Learning for Genomics: A Concise Overview , 2018, ArXiv.

[80]  Feng Liu,et al.  Deep Learning and Its Applications in Biomedicine , 2018, Genom. Proteom. Bioinform..

[81]  S. Mohamad R. Soroushmehr,et al.  Deep Learning in Pharmacogenomics: From Gene Regulation to Patient Stratification , 2018, Pharmacogenomics.

[82]  Andreas Bender,et al.  DeepSynergy: predicting anti-cancer drug synergy with Deep Learning , 2017, Bioinform..

[83]  Qiao Liu,et al.  Chromatin accessibility prediction via a hybrid deep convolutional neural network , 2017, Bioinform..

[84]  Cory Y. McLean,et al.  Sequential regulatory activity prediction across chromosomes with convolutional neural networks , 2017, bioRxiv.

[85]  Guohua Huang,et al.  The Advances and Challenges of Deep Learning Application in Biological Big Data Processing , 2017, Current Bioinformatics.

[86]  Pooja Asopa,et al.  Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach , 2018 .

[87]  Alexis B. Carter,et al.  Standards and Guidelines for Validating Next-Generation Sequencing Bioinformatics Pipelines: A Joint Recommendation of the Association for Molecular Pathology and the College of American Pathologists. , 2018, The Journal of molecular diagnostics : JMD.

[88]  Geoffrey E. Hinton,et al.  Deep Learning for Natural Language Processing , 2021, International Journal for Research in Applied Science and Engineering Technology.

[89]  Ole Winther,et al.  DeepLoc: prediction of protein subcellular localization using deep learning , 2017, Bioinform..

[90]  Gill Bejerano,et al.  A sequence-based, deep learning model accurately predicts RNA splicing branchpoints , 2017, bioRxiv.

[91]  Zenghui Wang,et al.  Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review , 2017, Neural Computation.

[92]  K. Eilbeck,et al.  Settling the score: variant prioritization and Mendelian disease , 2017, Nature Reviews Genetics.

[93]  Fabian J Theis,et al.  Single cells make big data: New challenges and opportunities in transcriptomics , 2017 .

[94]  Chao Ren,et al.  BiRen: predicting enhancers with a deep‐learning‐based model using the DNA sequence alone , 2017, Bioinform..

[95]  Daniel Quang,et al.  FactorNet: a deep learning framework for predicting cell type specific transcription factor binding from nucleotide-resolution sequential data , 2017, bioRxiv.

[96]  Viola Ravasio,et al.  GARFIELD-NGS: Genomic vARiants FIltering by dEep Learning moDels in NGS , 2017, bioRxiv.

[97]  Xiaodong Zhang,et al.  Concod: an effective integration framework of consensus-based calling deletions from next-generation sequencing data , 2017, Int. J. Data Min. Bioinform..

[98]  Heiko Müller,et al.  VCF.Filter: interactive prioritization of disease-linked genetic variants from sequencing data , 2017, Nucleic Acids Res..

[99]  O. Stegle,et al.  DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning , 2017, Genome Biology.

[100]  Irina I. Abnizova,et al.  Computational Errors and Biases in Short Read Next Generation Sequencing , 2017 .

[101]  Beilun Wang,et al.  Deep Motif Dashboard: Visualizing and Understanding Genomic Sequences Using Deep Neural Networks , 2016, PSB.

[102]  Seunghyun Park,et al.  Deep Recurrent Neural Network-Based Identification of Precursor microRNAs , 2017, NIPS.

[103]  Barnabás Póczos,et al.  Predicting enhancer-promoter interaction from genomic sequence with deep neural networks , 2016, bioRxiv.

[104]  L. Siu,et al.  Approaches to modernize the combination drug development paradigm , 2016, Genome Medicine.

[105]  Sharon R Grossman,et al.  Systematic mapping of functional enhancer–promoter connections with CRISPR interference , 2016, Science.

[106]  Jun Cui,et al.  Modeling of signaling crosstalk-mediated drug resistance and its implications on drug combination , 2016, Oncotarget.

[107]  Jens Hjerling-Leffler,et al.  Disentangling neural cell diversity using single-cell transcriptomics , 2016, Nature Neuroscience.

[108]  Yanjun Qi,et al.  DeepChrome: deep-learning for predicting gene expression from histone modifications , 2016, Bioinform..

[109]  J. McPherson,et al.  Coming of age: ten years of next-generation sequencing technologies , 2016, Nature Reviews Genetics.

[110]  Seunghyun Park,et al.  deepMiRGene: Deep Neural Network based Precursor microRNA Prediction , 2016, ArXiv.

[111]  Rachel L. Goldfeder,et al.  Medical implications of technical accuracy in genome sequencing , 2016, Genome Medicine.

[112]  W. Wasserman,et al.  Genome-wide prediction of cis-regulatory regions using supervised deep learning methods , 2016, bioRxiv.

[113]  Yanjun Qi,et al.  Deep Motif: Visualizing Genomic Sequence Classifications , 2016, ArXiv.

[114]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[115]  David R. Kelley,et al.  Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks , 2015, bioRxiv.

[116]  Antonino Fiannaca,et al.  A Deep Learning Model for Epigenomic Studies , 2016, 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS).

[117]  C. Reddy,et al.  Transfer learning for class imbalance problems with inadequate data , 2016, Knowledge and Information Systems.

[118]  Xiaohui S. Xie,et al.  DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences , 2015, bioRxiv.

[119]  Yi Li,et al.  Gene expression inference with deep learning , 2015, bioRxiv.

[120]  Insuk Lee,et al.  Systematic comparison of variant calling pipelines using gold standard personal exome variants , 2015, Scientific Reports.

[121]  O. Troyanskaya,et al.  Predicting effects of noncoding variants with deep learning–based sequence model , 2015, Nature Methods.

[122]  B. Frey,et al.  Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning , 2015, Nature Biotechnology.

[123]  S. Quake,et al.  A survey of human brain transcriptome diversity at the single cell level , 2015, Proceedings of the National Academy of Sciences.

[124]  L Li,et al.  A New Drug Combinatory Effect Prediction Algorithm on the Cancer Cell Based on Gene Expression and Dose–Response Curve , 2015, CPT: pharmacometrics & systems pharmacology.

[125]  M. Ritchie,et al.  Methods of integrating data to uncover genotype–phenotype interactions , 2015, Nature Reviews Genetics.

[126]  Yoshua Bengio,et al.  Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling , 2014, ArXiv.

[127]  Lawrence A. Donehower,et al.  Combinatorial therapy discovery using mixed integer linear programming , 2014, Bioinform..

[128]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[129]  Stefan C. Kremer,et al.  Recurrent Neural Networks , 2013, Handbook on Neural Information Processing.

[130]  Gabor T. Marth,et al.  Haplotype-based variant detection from short-read sequencing , 2012, 1207.3907.

[131]  Dong Yu,et al.  Deep Learning and Its Applications to Signal and Information Processing [Exploratory DSP] , 2011, IEEE Signal Processing Magazine.

[132]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[133]  Maria P. Pavlou,et al.  Integrating high-throughput technologies in the quest for effective biomarkers for ovarian cancer , 2010, Nature Reviews Cancer.

[134]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[135]  Ernesto Picardi,et al.  Bioinformatics approaches for genomics and post genomics applications of next-generation sequencing , 2010, Briefings Bioinform..

[136]  Jorge Cortes,et al.  Systems approaches and algorithms for discovery of combinatorial therapies. , 2009, Wiley interdisciplinary reviews. Systems biology and medicine.

[137]  A. Barabasi,et al.  Network medicine : a network-based approach to human disease , 2010 .

[138]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[139]  Simon Kasif,et al.  Probabilistic Protein Function Prediction from Heterogeneous Genome-Wide Data , 2007, PloS one.

[140]  Russ Altman,et al.  Pharmacogenomics: Challenges and Opportunities , 2006, Annals of Internal Medicine.

[141]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[142]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[143]  D. Mercola,et al.  The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFβ1, PTEN, p53, and fibronectin , 2006, Cancer Gene Therapy.

[144]  F. Scarselli,et al.  A new model for learning in graph domains , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[145]  S. Batzoglou,et al.  Distribution and intensity of constraint in mammalian genomic sequence. , 2005, Genome research.

[146]  A. Bezerianos,et al.  Gene Networks Inference From Expression Data Using a Recurrent Neuro-Fuzzy Approach , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[147]  J. Woodcock,et al.  Translation of pharmacogenomics and pharmacogenetics: a regulatory perspective , 2004, Nature Reviews Drug Discovery.

[148]  森村 浩季,et al.  IEEE International Solid-State Circuits Conference (ISSCC) 2004 国際会議報告 , 2004 .

[149]  B. Honoré,et al.  Functional genomics studied by proteomics. , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[150]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[151]  Charles Auffray,et al.  From functional genomics to systems biology: concepts and practices. , 2003, Comptes rendus biologies.

[152]  Steven Henikoff,et al.  SIFT: predicting amino acid changes that affect protein function , 2003, Nucleic Acids Res..

[153]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[154]  Michael R. Green,et al.  Expressing the human genome , 2001, Nature.

[155]  Frank H. Guenther,et al.  Neural Networks: Biological Models and Applications , 2001 .

[156]  R. E. White,et al.  High-throughput screening in drug metabolism and pharmacokinetic support of drug discovery. , 2000, Annual review of pharmacology and toxicology.

[157]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[158]  Kuldip K. Paliwal,et al.  Bidirectional recurrent neural networks , 1997, IEEE Trans. Signal Process..

[159]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[160]  G. Schuler,et al.  Entrez: molecular biology database and retrieval system. , 1996, Methods in enzymology.

[161]  Andreas Zell,et al.  Simulation neuronaler Netze , 1994 .

[162]  Jacek M. Zurada,et al.  Introduction to artificial neural systems , 1992 .

[163]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[164]  Kunihiko Fukushima,et al.  Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Visual Pattern Recognition , 1982 .

[165]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.