Thermodynamic and Transport Properties of H2O + NaCl from Polarizable Force Fields.

Molecular dynamics and Monte Carlo simulations were performed to obtain thermodynamic and transport properties of the binary H2O + NaCl system using the polarizable force fields of Kiss and Baranyai ( J. Chem. Phys. 2013 , 138 , 204507 and 2014 , 141 , 114501 ). In particular, liquid densities, electrolyte and crystal chemical potentials of NaCl, salt solubilities, mean ionic activity coefficients, vapor pressures, vapor-liquid interfacial tensions, and viscosities were obtained as functions of temperature, pressure, and salt concentration. We compared the performance of the polarizable force fields against fixed-point-charge (nonpolarizable) models. Most of the properties of interest are better represented by the polarizable models, which also remain physically realistic at elevated temperatures.

[1]  Ivo Nezbeda,et al.  Molecular force fields for aqueous electrolytes: SPC/E-compatible charged LJ sphere models and their limitations. , 2013, The Journal of chemical physics.

[2]  M. P. Tosi,et al.  Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—I: The Huggins-Mayer and Pauling forms , 1964 .

[3]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[4]  J. I. Siepmann,et al.  A method for the direct calculation of chemical potentials for dense chain systems , 1990 .

[5]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[6]  Alexander D. MacKerell,et al.  A polarizable model of water for molecular dynamics simulations of biomolecules , 2006 .

[7]  E. Maginn,et al.  A general and efficient Monte Carlo method for sampling intramolecular degrees of freedom of branched and cyclic molecules. , 2011, The Journal of chemical physics.

[8]  P. Cummings,et al.  From dimer to condensed phases at extreme conditions: accurate predictions of the properties of water by a Gaussian charge polarizable model. , 2005, The Journal of chemical physics.

[9]  Athanassios Z. Panagiotopoulos,et al.  Phase equilibria by simulation in the Gibbs ensemble , 1988 .

[10]  C. Vega,et al.  Note: Free energy calculations for atomic solids through the Einstein crystal/molecule methodology using GROMACS and LAMMPS. , 2012, The Journal of chemical physics.

[11]  P. Debenedetti,et al.  Simulations of vapor–liquid phase equilibrium and interfacial tension in the CO2–H2O–NaCl system , 2013 .

[12]  J. D. Hemptinne,et al.  Multicomponent equations of state for electrolytes , 2007 .

[13]  Athanassios Z. Panagiotopoulos,et al.  A Fixed Point Charge Model for Water Optimized to the Vapor−Liquid Coexistence Properties , 1998 .

[14]  A. Ghoufi,et al.  Prediction of the concentration dependence of the surface tension and density of salt solutions: atomistic simulations using Drude oscillator polarizable and nonpolarizable models. , 2013, Physical chemistry chemical physics : PCCP.

[15]  Ivo Nezbeda,et al.  Chemical Potentials, Activity Coefficients, and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields. , 2015, Journal of chemical theory and computation.

[16]  A. Panagiotopoulos,et al.  Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations. , 2015, The Journal of chemical physics.

[17]  Ivo Nezbeda,et al.  Molecular simulation of aqueous electrolytes: water chemical potential results and Gibbs-Duhem equation consistency tests. , 2013, The Journal of chemical physics.

[18]  L. Vlček,et al.  Vapor-liquid equilibrium and polarization behavior of the GCP water model: Gaussian charge-on-spring versus dipole self-consistent field approaches to induced polarization. , 2015, The journal of physical chemistry. B.

[19]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[20]  S. Weerasinghe,et al.  A Kirkwood−Buff Derived Force Field for Mixtures of Urea and Water , 2003 .

[21]  Péter T Kiss,et al.  Efficient Handling of Gaussian Charge Distributions: An Application to Polarizable Molecular Models. , 2014, Journal of chemical theory and computation.

[22]  Steven J. Stuart,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994 .

[23]  M. Lísal,et al.  Molecular simulation of aqueous electrolyte solubility. 3. Alkali-halide salts and their mixtures in water and in hydrochloric acid. , 2012, The journal of physical chemistry. B.

[24]  A. Panagiotopoulos Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble , 1987 .

[25]  Alexander D. MacKerell,et al.  Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field. , 2010, Journal of chemical theory and computation.

[26]  I. Nezbeda,et al.  Computationally efficient Monte Carlo simulations for polarisable models: multi-particle move method for water and aqueous electrolytes , 2013 .

[27]  William R. Smith,et al.  Molecular simulation of aqueous electrolyte solubility. 2. Osmotic ensemble Monte Carlo methodology for free energy and solubility calculations and application to NaCl. , 2011, The journal of physical chemistry. B.

[28]  William R. Smith,et al.  Molecular simulations of aqueous electrolyte solubility: 1. The expanded-ensemble osmotic molecular dynamics method for the solution phase. , 2005, The journal of physical chemistry. B.

[29]  Michael R Shirts,et al.  A Benchmark Test Set for Alchemical Free Energy Transformations and Its Use to Quantify Error in Common Free Energy Methods. , 2011, Journal of chemical theory and computation.

[30]  M. R. Chakrabarty,et al.  Combining rules for intermolecular potential parameters. III. Application to the exp 6 potential , 1973 .

[31]  G. Sadowski,et al.  Modeling aqueous electrolyte solutions. Part 2. Weak electrolytes , 2009 .

[32]  S. L. Phillips,et al.  A Technical Databook for Geothermal Energy Utilization , 1981 .

[33]  P. Kiss,et al.  A transferable classical potential for the water molecule. , 2010, The Journal of chemical physics.

[34]  William L. Jorgensen,et al.  Temperature and size dependence for Monte Carlo simulations of TIP4P water , 1985 .

[35]  J. Brodholt Molecular dynamics simulations of aqueous NaCl solutions at high pressures and temperatures , 1998 .

[36]  P. Kiss,et al.  A systematic development of a polarizable potential of water. , 2013, The Journal of chemical physics.

[37]  Margaret E. Johnson,et al.  Current status of the AMOEBA polarizable force field. , 2010, The journal of physical chemistry. B.

[38]  G. Hummer,et al.  Computer simulation of aqueous Na-Cl electrolytes , 1994 .

[39]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .

[40]  Athanassios Z Panagiotopoulos,et al.  Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations. , 2015, The Journal of chemical physics.

[41]  J. Arons,et al.  Water-Salt Phase Equilibria at Elevated Temperatures and Pressures: Model Development and Mixture Predictions , 1995 .

[42]  A. Panagiotopoulos,et al.  Molecular simulation of thermodynamic and transport properties for the H2O+NaCl system. , 2014, The Journal of chemical physics.

[43]  J. Alejandre,et al.  Effect of flexibility on surface tension and coexisting densities of water. , 2008, The Journal of chemical physics.

[44]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[45]  T. Cheatham,et al.  Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations , 2008, The journal of physical chemistry. B.

[46]  A. Haghtalab,et al.  A square-well equation of state for aqueous strong electrolyte solutions , 2009 .

[47]  Jií Kolafa,et al.  Time‐reversible always stable predictor–corrector method for molecular dynamics of polarizable molecules , 2004, J. Comput. Chem..

[48]  P. Kiss,et al.  A new polarizable force field for alkali and halide ions. , 2014, The Journal of chemical physics.

[49]  David E. Smith,et al.  Computer simulations of NaCl association in polarizable water , 1994 .

[50]  Paul E. Smith,et al.  A Kirkwood-Buff Derived Force Field for Aqueous Alkali Halides. , 2011, Journal of chemical theory and computation.

[51]  W. V. van Gunsteren,et al.  Charge-on-spring polarizable water models revisited: from water clusters to liquid water to ice. , 2004, The Journal of chemical physics.

[52]  Greg L. Hura,et al.  Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. , 2004, The Journal of chemical physics.

[53]  George Jackson,et al.  SAFT-VRE: Phase Behavior of Electrolyte Solutions with the Statistical Associating Fluid Theory for Potentials of Variable Range , 1999 .

[54]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[55]  D. Chipman Water from ambient to supercritical conditions with the AMOEBA model. , 2013, The journal of physical chemistry. B.

[56]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[57]  Alexander D. MacKerell,et al.  Six-site polarizable model of water based on the classical Drude oscillator. , 2013, The Journal of chemical physics.

[58]  B. Roux,et al.  Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. , 2006, The journal of physical chemistry. B.

[59]  Kenneth S. Pitzer,et al.  Thermodynamic Properties of Aqueous Sodium Chloride Solutions , 1984 .