Computing linear response statistics using orthogonal polynomial based estimators: An RKHS formulation
暂无分享,去创建一个
He Zhang | John Harlim | Xiantao Li | J. Harlim | Xiantao Li | He Zhang
[1] Yuan Cao,et al. A Generalization Theory of Gradient Descent for Learning Over-parameterized Deep ReLU Networks , 2019, ArXiv.
[2] B. Leimkuhler,et al. The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics , 2013, 1308.5814.
[3] E. F. Schuster. Estimation of a Probability Density Function and Its Derivatives , 1969 .
[4] H. G. Petersen,et al. Error estimates on averages of correlated data , 1989 .
[5] C. J. Stone,et al. Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .
[6] Xiantao Li,et al. The strong convergence of operator-splitting methods for the Langevin dynamics model , 2017, 1706.04237.
[7] Hugo Larochelle,et al. Neural Autoregressive Distribution Estimation , 2016, J. Mach. Learn. Res..
[8] Kenji Fukumizu,et al. Universality, Characteristic Kernels and RKHS Embedding of Measures , 2010, J. Mach. Learn. Res..
[9] Melville S. Green,et al. Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids , 1954 .
[10] Gary P. Morriss,et al. Nonlinear-response theory for steady planar Couette flow , 1984 .
[11] M. Toda,et al. In: Statistical physics II , 1985 .
[12] Tyrus Berry,et al. Consistent manifold representation for topological data analysis , 2016, Foundations of Data Science.
[13] R. Kubo. Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .
[14] Ingo Steinwart,et al. Fast learning from α-mixing observations , 2014, J. Multivar. Anal..
[15] Shixiao W. Jiang,et al. Modeling of missing dynamical systems: deriving parametric models using a nonparametric framework , 2019, 1905.08082.
[16] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[17] B. Silverman. Density estimation for statistics and data analysis , 1986 .
[18] W. A. Al-Salam. Operational representations for the Laguerre and other polynomials , 1964 .
[19] He Zhang,et al. Linear Response Based Parameter Estimation in the Presence of Model Error , 2021, J. Comput. Phys..
[20] Andreas Christmann,et al. Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.
[21] Andrew J. Majda,et al. Information theory and stochastics for multiscale nonlinear systems , 2005 .
[22] Matthias Hein,et al. Error Estimates for Spectral Convergence of the Graph Laplacian on Random Geometric Graphs Toward the Laplace–Beltrami Operator , 2018, Found. Comput. Math..
[23] Aapo Hyvärinen,et al. Density Estimation in Infinite Dimensional Exponential Families , 2013, J. Mach. Learn. Res..
[24] Iain Murray,et al. Masked Autoregressive Flow for Density Estimation , 2017, NIPS.
[25] E. Nadaraya. On Non-Parametric Estimates of Density Functions and Regression Curves , 1965 .
[26] Christian Maes,et al. Fluctuations and response of nonequilibrium states. , 2009, Physical review letters.
[27] Doron S. Lubinsky,et al. Erratum: Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights , 1992 .
[28] Zhipeng Wang,et al. Nonparametric density estimation for high‐dimensional data—Algorithms and applications , 2019, WIREs Computational Statistics.
[29] Martin Hairer,et al. A simple framework to justify linear response theory , 2009, Nonlinearity.
[30] He Zhang,et al. A Parameter Estimation Method Using Linear Response Statistics , 2016 .
[31] M. Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function , 1956 .
[32] A. O'Neill,et al. Atmospheric multiple equilibria and non‐Gaussian behaviour in model simulations , 2001 .
[33] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .
[34] C. Leith. Climate Response and Fluctuation Dissipation , 1975 .
[35] D. Owen. Handbook of Mathematical Functions with Formulas , 1965 .
[36] Thomas Speck,et al. Thermodynamic formalism and linear response theory for nonequilibrium steady states. , 2016, Physical review. E.
[37] B. Roux. The calculation of the potential of mean force using computer simulations , 1995 .
[38] Melville S. Green,et al. Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena , 1952 .
[39] L. Wasserman. All of Nonparametric Statistics , 2005 .
[40] Wing Hung Wong,et al. Convergence rates of a partition based Bayesian multivariate density estimation method , 2017, NIPS.
[41] Jonathan C. Mattingly,et al. A weak trapezoidal method for a class of stochastic differential equations , 2009, 0906.3475.
[42] L. Carlitz. The product of several Hermite or Laguerre polynomials , 1962 .
[43] O. Ernst,et al. ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .
[44] Ahmad El Soufi,et al. Eigenvalues of the Laplacian on a compact manifold with density , 2013, 1310.1490.
[45] Y. Davydov. Convergence of Distributions Generated by Stationary Stochastic Processes , 1968 .
[46] Andrew J. Majda,et al. Fundamental limitations of polynomial chaos for uncertainty quantification in systems with intermittent instabilities , 2013 .
[47] Gary P. Morriss,et al. Statistical Mechanics of Nonequilibrium Liquids , 2008 .
[48] John Harlim,et al. Correcting Biased Observation Model Error in Data Assimilation , 2016, 1611.05405.
[49] Jonathan C. Mattingly,et al. Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .
[50] Jenq-Neng Hwang,et al. Nonparametric multivariate density estimation: a comparative study , 1994, IEEE Trans. Signal Process..
[51] Matthias Morzfeld,et al. Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems , 2014, J. Comput. Phys..