Computing linear response statistics using orthogonal polynomial based estimators: An RKHS formulation

We study the problem of estimating linear response statistics under external perturbations using time series of unperturbed dynamics. A standard approach to this estimation problem is to employ the Fluctuation-Dissipation Theory, which requires the knowledge of the functional form of the underlying unperturbed density that is not available in general. To overcome this issue, we consider a nonparametric density estimator formulated by the kernel embedding of distributions. To avoid the computational expense associated with using radial type kernels, we consider the "Mercer-type" kernels constructed based on the classical orthogonal bases defined on non-compact domains. While the resulting representation is analogous to Polynomial Chaos Expansion(PCE), by studying in the reproducing kernel Hilbert space(RKHS) setting, we establish the uniform convergence of the estimator. More importantly, the RKHS formulation allows one to systematically address a practical question of identifying the PCE basis for a consistent estimation through the decay property of the target functions that can be quantified using the available data. In terms of the linear response estimation, our study provides practical conditions for the well-posedness of not only the estimator but also the well-posedness of the underlying response statistics. We provide a theoretical guarantee for the convergence of the estimator to the underlying linear response statistics. Finally, we offer an error bound for the density estimation that accounts for the Monte-Carlo averaging over non-i.i.d time series and the biases due to truncation. This error bound helps understand the feasibility as well as limitation of the kernel embedding with Mercer-type kernels. Numerically, we verify the effectiveness of the kernel embedding linear response estimator on two stochastic dynamics with known, yet, non-trivial equilibrium densities.

[1]  Yuan Cao,et al.  A Generalization Theory of Gradient Descent for Learning Over-parameterized Deep ReLU Networks , 2019, ArXiv.

[2]  B. Leimkuhler,et al.  The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics , 2013, 1308.5814.

[3]  E. F. Schuster Estimation of a Probability Density Function and Its Derivatives , 1969 .

[4]  H. G. Petersen,et al.  Error estimates on averages of correlated data , 1989 .

[5]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[6]  Xiantao Li,et al.  The strong convergence of operator-splitting methods for the Langevin dynamics model , 2017, 1706.04237.

[7]  Hugo Larochelle,et al.  Neural Autoregressive Distribution Estimation , 2016, J. Mach. Learn. Res..

[8]  Kenji Fukumizu,et al.  Universality, Characteristic Kernels and RKHS Embedding of Measures , 2010, J. Mach. Learn. Res..

[9]  Melville S. Green,et al.  Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids , 1954 .

[10]  Gary P. Morriss,et al.  Nonlinear-response theory for steady planar Couette flow , 1984 .

[11]  M. Toda,et al.  In: Statistical physics II , 1985 .

[12]  Tyrus Berry,et al.  Consistent manifold representation for topological data analysis , 2016, Foundations of Data Science.

[13]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[14]  Ingo Steinwart,et al.  Fast learning from α-mixing observations , 2014, J. Multivar. Anal..

[15]  Shixiao W. Jiang,et al.  Modeling of missing dynamical systems: deriving parametric models using a nonparametric framework , 2019, 1905.08082.

[16]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[17]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[18]  W. A. Al-Salam Operational representations for the Laguerre and other polynomials , 1964 .

[19]  He Zhang,et al.  Linear Response Based Parameter Estimation in the Presence of Model Error , 2021, J. Comput. Phys..

[20]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[21]  Andrew J. Majda,et al.  Information theory and stochastics for multiscale nonlinear systems , 2005 .

[22]  Matthias Hein,et al.  Error Estimates for Spectral Convergence of the Graph Laplacian on Random Geometric Graphs Toward the Laplace–Beltrami Operator , 2018, Found. Comput. Math..

[23]  Aapo Hyvärinen,et al.  Density Estimation in Infinite Dimensional Exponential Families , 2013, J. Mach. Learn. Res..

[24]  Iain Murray,et al.  Masked Autoregressive Flow for Density Estimation , 2017, NIPS.

[25]  E. Nadaraya On Non-Parametric Estimates of Density Functions and Regression Curves , 1965 .

[26]  Christian Maes,et al.  Fluctuations and response of nonequilibrium states. , 2009, Physical review letters.

[27]  Doron S. Lubinsky,et al.  Erratum: Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights , 1992 .

[28]  Zhipeng Wang,et al.  Nonparametric density estimation for high‐dimensional data—Algorithms and applications , 2019, WIREs Computational Statistics.

[29]  Martin Hairer,et al.  A simple framework to justify linear response theory , 2009, Nonlinearity.

[30]  He Zhang,et al.  A Parameter Estimation Method Using Linear Response Statistics , 2016 .

[31]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[32]  A. O'Neill,et al.  Atmospheric multiple equilibria and non‐Gaussian behaviour in model simulations , 2001 .

[33]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[34]  C. Leith Climate Response and Fluctuation Dissipation , 1975 .

[35]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[36]  Thomas Speck,et al.  Thermodynamic formalism and linear response theory for nonequilibrium steady states. , 2016, Physical review. E.

[37]  B. Roux The calculation of the potential of mean force using computer simulations , 1995 .

[38]  Melville S. Green,et al.  Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena , 1952 .

[39]  L. Wasserman All of Nonparametric Statistics , 2005 .

[40]  Wing Hung Wong,et al.  Convergence rates of a partition based Bayesian multivariate density estimation method , 2017, NIPS.

[41]  Jonathan C. Mattingly,et al.  A weak trapezoidal method for a class of stochastic differential equations , 2009, 0906.3475.

[42]  L. Carlitz The product of several Hermite or Laguerre polynomials , 1962 .

[43]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[44]  Ahmad El Soufi,et al.  Eigenvalues of the Laplacian on a compact manifold with density , 2013, 1310.1490.

[45]  Y. Davydov Convergence of Distributions Generated by Stationary Stochastic Processes , 1968 .

[46]  Andrew J. Majda,et al.  Fundamental limitations of polynomial chaos for uncertainty quantification in systems with intermittent instabilities , 2013 .

[47]  Gary P. Morriss,et al.  Statistical Mechanics of Nonequilibrium Liquids , 2008 .

[48]  John Harlim,et al.  Correcting Biased Observation Model Error in Data Assimilation , 2016, 1611.05405.

[49]  Jonathan C. Mattingly,et al.  Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .

[50]  Jenq-Neng Hwang,et al.  Nonparametric multivariate density estimation: a comparative study , 1994, IEEE Trans. Signal Process..

[51]  Matthias Morzfeld,et al.  Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems , 2014, J. Comput. Phys..