Sinusoidal input-based visual control for nonholonomic vehicles

This paper proposes a new visual control approach based on sinusoidal inputs to be used on a nonholonomic robot. We present several contributions: In our method, developed considering a unicycle kinematic model, sinusoids are used in such a way that the generated vehicle trajectories are feasible, smooth and versatile. Our technique improves previous sinusoidal-based control works in terms of efficiency and flexibility. As further contributions, we present analytical expressions for the evolution of the robot's state, and propose a new state-feedback control law based on these expressions. All the information used in the control scheme is obtained from omnidirectional vision by means of the one-dimensional trifocal tensor. Stability analysis of the proposed approach is presented, and its performance is illustrated through experiments.

[1]  Ehud Rivlin,et al.  Visual homing: Surfing on the epipoles , 1997, Block Island Workshop on Vision and Control.

[2]  Giuseppe Oriolo,et al.  Visual servoing for path reaching with nonholonomic robots , 2011, Robotica.

[3]  Antonio Bicchi,et al.  Shortest Paths for a Robot With Nonholonomic and Field-of-View Constraints , 2010, IEEE Transactions on Robotics.

[4]  Lorenz Gerstmayr-Hillen,et al.  Three 2D-warping schemes for visual robot navigation , 2010, Auton. Robots.

[5]  Peter I. Corke,et al.  Visual servoing of a car-like vehicle - an application of omnidirectional vision , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[6]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[7]  Jangmyung Lee,et al.  Localization of a high-speed mobile robot using global features , 2000, 2009 4th International Conference on Autonomous Robots and Agents.

[8]  Seung-Eun Yu,et al.  Landmark vectors with quantized distance information for homing navigation , 2011, Adapt. Behav..

[9]  Yu Fu,et al.  Multi-waypoint visual homing in piecewise linear trajectory , 2012, Robotica.

[10]  S. Sastry,et al.  Trajectory generation for the N-trailer problem using Goursat normal form , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[11]  Avinash C. Kak,et al.  Vision for Mobile Robot Navigation: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[13]  Richard M. Murray,et al.  Nonholonomic control systems: from steering to stabilization with sinusoids , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[14]  Hanspeter A. Mallot,et al.  Efficient visual homing based on Fourier transformed panoramic images , 2006, Robotics Auton. Syst..

[15]  Olivier D. Faugeras,et al.  Self-Calibration of a 1D Projective Camera and Its Application to the Self-Calibration of a 2D Projective Camera , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Antonis A. Argyros,et al.  Robot Homing by Exploiting Panoramic Vision , 2005, Auton. Robots.

[17]  Gonzalo López-Nicolás,et al.  Omnidirectional visual control of mobile robots based on the 1D trifocal tensor , 2010, Robotics Auton. Syst..

[18]  Philippe Martinet,et al.  Indoor navigation of a non-holonomic mobile robot using a visual memory , 2008, Auton. Robots.

[19]  Urbano Nunes,et al.  Path-following control of mobile robots in presence of uncertainties , 2005, IEEE Transactions on Robotics.

[20]  Gonzalo López-Nicolás,et al.  Omnidirectional visual homing using the 1D trifocal tensor , 2010, 2010 IEEE International Conference on Robotics and Automation.

[21]  Seth Hutchinson,et al.  Visual Servo Control Part I: Basic Approaches , 2006 .

[22]  Xi Liu,et al.  Motion-Estimation-Based Visual Servoing of Nonholonomic Mobile Robots , 2011, IEEE Transactions on Robotics.

[23]  Martin Jägersand,et al.  Three-view uncalibrated visual servoing , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[24]  Giuseppe Oriolo,et al.  Feedback control of a nonholonomic car-like robot , 1998 .

[25]  Luis Moreno,et al.  Navigation of mobile robots: open questions , 2000, Robotica.

[26]  C. Sagüés,et al.  Visual Navigation by Means of Three View Geometry , 2011 .

[27]  Warren E. Dixon,et al.  Homography-based visual servo tracking control of a wheeled mobile robot , 2006, IEEE Transactions on Robotics.

[28]  Roland Siegwart,et al.  Scale-only visual homing from an omnidirectional camera , 2012, 2012 IEEE International Conference on Robotics and Automation.

[29]  Michael Defoort,et al.  Performance-based reactive navigation for non-holonomic mobile robots , 2009, Robotica.

[30]  Andrew Vardy,et al.  Visual homing in environments with anisotropic landmark distribution , 2007, Auton. Robots.

[31]  Claude Samson,et al.  Feedback control of a nonholonomic wheeled cart in Cartesian space , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[32]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.

[33]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[34]  Shree K. Nayar,et al.  A Theory of Single-Viewpoint Catadioptric Image Formation , 1999, International Journal of Computer Vision.

[35]  Patrick Rives,et al.  Vision-based Control for Car Platooning using Homography Decomposition , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[36]  Josechu J. Guerrero,et al.  Visual control through the trifocal tensor for nonholonomic robots , 2010, Robotics Auton. Syst..

[37]  R. Murray,et al.  Exponential stabilization of driftless nonlinear control systems using homogeneous feedback , 1997, IEEE Trans. Autom. Control..

[38]  Andrés Rosales,et al.  Trajectory tracking of mobile robots in dynamic environments—a linear algebra approach , 2009, Robotica.

[39]  S. Hutchinson,et al.  Visual Servo Control Part II : Advanced Approaches , 2007 .

[40]  François Chaumette,et al.  Visual servo control. II. Advanced approaches [Tutorial] , 2007, IEEE Robotics & Automation Magazine.

[41]  Josechu J. Guerrero,et al.  Motion and structure for vision-based navigation , 1999, Robotica.

[42]  Danica Kragic,et al.  Switching visual control based on epipoles for mobile robots , 2008, Robotics Auton. Syst..

[43]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .