Statistical methods for population pharmacokinetic modelling

A principal aim of population pharmacokinetic studies is to estimate the variance components associated with intra- and inter-individual variability in observed drug concentrations. The explanation of the inter-individual variability in terms of subject-specific covariates is also of great importance. Pharmacokinetic models are nonlinear in the parameters and estimation is not straightforward. Within this paper we review a number of estimation approaches which have been suggested for population pharmacokinetic analyses. We distinguish between Bayesian and non-Bayesian and fully-parametric, semi-parametric and nonparametric methods.

[1]  F Mentré,et al.  Handling covariates in population pharmacokinetics. , 1994, International journal of bio-medical computing.

[2]  Nicholas H. G. Holford,et al.  The Population Approach: Rationale, Methods, and Applications in Clinical Pharmacology and Drug Development , 1994 .

[3]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[4]  D. Bates,et al.  Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model , 1995 .

[5]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[6]  James E. Bennett,et al.  The Bayesian modeling of covariates for population pharmacokinetic models , 1996 .

[7]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[8]  L. Sheiner,et al.  Understanding the Dose-Effect Relationship , 1981, Clinical pharmacokinetics.

[9]  G. Reinsel,et al.  Models for Longitudinal Data with Random Effects and AR(1) Errors , 1989 .

[10]  Alain Mallet,et al.  Optimal design in random-effects regression models , 1997 .

[11]  J Wakefield,et al.  An application of Bayesian population pharmacokinetic/pharmacodynamic models to dose recommendation. , 1995, Statistics in medicine.

[12]  L B Sheiner,et al.  Estimating population kinetics. , 1982, Critical reviews in biomedical engineering.

[13]  R. Gomeni,et al.  A two-step iterative algorithm for estimation in nonlinear mixed-effect models with an evaluation in population pharmacokinetics. , 1995, Journal of biopharmaceutical statistics.

[14]  Stephen G Walker,et al.  AN EM ALGORITHM FOR NONLINEAR RANDOM EFFECTS MODELS , 1996 .

[15]  J Wakefield,et al.  A population approach to initial dose selection. , 1997, Statistics in medicine.

[16]  A. Mallet A maximum likelihood estimation method for random coefficient regression models , 1986 .

[17]  J F Boisvieux,et al.  Alternative approaches to estimation of population pharmacokinetic parameters: comparison with the nonlinear mixed-effect model. , 1984, Drug metabolism reviews.

[18]  Peter Müller,et al.  A Bayesian Population Model with Hierarchical Mixture Priors Applied to Blood Count Data , 1997 .

[19]  Donald A. Berry,et al.  Statistical Methodology in the Pharmaceutical Sciences , 1989 .

[20]  Walter R. Gilks,et al.  MCMC for nonlinear hierarchical models , 1995 .

[21]  A. Racine‐Poon,et al.  Efficacy, pharmacodynamics, and pharmacokinetics of CGP 51901, an anti‐immunoglobulin E chimeric monoclonal antibody, in patients with seasonal allergic rhinitis , 1997, Clinical pharmacology and therapeutics.

[22]  Russell D. Wolfinger,et al.  Laplace's approximation for nonlinear mixed models. , 1993 .

[23]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[24]  D. Bates,et al.  Nonlinear mixed effects models for repeated measures data. , 1990, Biometrics.

[25]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[26]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[27]  Jon Wakefield,et al.  An Expected Loss Approach to the Design of Dosage Regimens Via Sampling‐Based Methods , 1994 .

[28]  W. Gilks,et al.  Adaptive Rejection Metropolis Sampling Within Gibbs Sampling , 1995 .

[29]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[30]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[31]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[32]  M Davidian,et al.  Population pharmacokinetic/pharmacodynamic methodology and applications: a bibliography. , 1994, Biometrics.

[33]  A. Schumitzky Nonparametric EM Algorithms for estimating prior distributions , 1991 .

[34]  Adrian F. M. Smith,et al.  Bayesian Analysis of Linear and Non‐Linear Population Models by Using the Gibbs Sampler , 1994 .

[35]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[36]  Amy Racine-Poon,et al.  "The Bayesian approach to population pharmacokinetic/pharmacodynamic modeling". In: Case Studies in Bayesian Statistics (Vol IV), Lecture Notes in Statistics , 1999 .

[37]  A Racine-Poon,et al.  A Bayesian approach to nonlinear random effects models. , 1985, Biometrics.

[38]  D. Bates,et al.  Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data , 1988 .

[39]  Milo Gibaldi,et al.  Drugs and the pharmaceutical sciences , 1975 .

[40]  E. Vonesh,et al.  Mixed-effects nonlinear regression for unbalanced repeated measures. , 1992, Biometrics.

[41]  Marie Davidian,et al.  The Nonlinear Mixed Effects Model with a Smooth Random Effects Density , 1993 .

[42]  J. Wakefield The Bayesian Analysis of Population Pharmacokinetic Models , 1996 .

[43]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.