Quantitative characterization of the interface roughness of (GaIn)As quantum wells by high resolution STEM.

[1]  K. Volz,et al.  Local sample thickness determination via scanning transmission electron microscopy defocus series , 2016, Journal of microscopy.

[2]  L. Allen,et al.  Quantitative Elemental Mapping at Atomic Resolution Using X-Ray Spectroscopy , 2014 .

[3]  S Van Aert,et al.  Quantitative composition determination at the atomic level using model-based high-angle annular dark field scanning transmission electron microscopy. , 2014, Ultramicroscopy.

[4]  V. Grillo,et al.  Quantitative chemical evaluation of dilute GaNAs using ADF STEM: avoiding surface strain induced artifacts. , 2013, Ultramicroscopy.

[5]  K. Volz,et al.  Determination of the chemical composition of GaNAs using STEM HAADF imaging and STEM strain state analysis. , 2012, Ultramicroscopy.

[6]  Detlef Hommel,et al.  Composition mapping in InGaN by scanning transmission electron microscopy. , 2011, Ultramicroscopy.

[7]  V. Holý,et al.  X-ray characterization of semiconductor nanostructures , 2011 .

[8]  A. J. D’Alfonso,et al.  Elemental mapping in scanning transmission electron microscopy , 2010 .

[9]  S Bals,et al.  Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy. , 2009, Ultramicroscopy.

[10]  Adrian Avramescu,et al.  Measurement of specimen thickness and composition in Al(x)Ga(1-x)N/GaN using high-angle annular dark field images. , 2009, Ultramicroscopy.

[11]  Wolfgang Stolz,et al.  MOVPE growth of dilute nitride III/V semiconductors using all liquid metalorganic precursors , 2009 .

[12]  Susanne Stemmer,et al.  Experimental quantification of annular dark-field images in scanning transmission electron microscopy. , 2008, Ultramicroscopy.

[13]  Kazuo Ishizuka,et al.  Element-selective imaging of atomic columns in a crystal using STEM and EELS , 2007, Nature.

[14]  D. Muller,et al.  Imaging individual atoms inside crystals with ADF-STEM. , 2003, Ultramicroscopy.

[15]  W. H. Weinberg,et al.  Effects of buffer layer thickness and film compositional grading on strain relaxation kinetics in InAs/GaAs(111)A heteroepitaxy , 2000 .

[16]  Kapon,et al.  Theoretical and experimental limits of the analysis of III/V semiconductors using EELS , 2000, Micron.

[17]  D. Dunstan,et al.  Strain and strain relaxation in semiconductors , 1997 .

[18]  P. Tasker,et al.  AlGaInP/GaInAs/GaAs MODFET devices: candidates for optoelectronic integrated circuits , 1993 .

[19]  H. Cerva,et al.  New methods for qualitative and quantitative analysis of the GaAs/AlGaAs interface by high-resolution electron microscopy , 1991 .

[20]  K. Ishizuka,et al.  High Resolution Peak Measurement and Strain Mapping using Peak Pairs Analysis , 2009 .

[21]  A. Rosenauer,et al.  STEMSIM—a New Software Tool for Simulation of STEM HAADF Z-Contrast Imaging , 2008 .

[22]  F. Dimroth,et al.  Doping, Electrical Properties and Solar Cell Application of GaInNAs , 2008 .

[23]  T. Metzger,et al.  X-ray methods for strain and composition analysis in self-organized semiconductor nanostructures , 2005 .

[24]  Earl J. Kirkland,et al.  Advanced Computing in Electron Microscopy , 1998 .