Mapping forest aboveground biomass in the Northeastern United States with ALOS PALSAR dual-polarization L-band

Abstract A method for regional scale mapping of aboveground forest biomass with Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data is presented. A fully automated algorithm, exploiting the synergy of SAR and optical remote sensing for the calibration of a semi-empirical model (Santoro et al., 2011; Cartus et al., 2011), was adopted to map forest aboveground biomass with L-band HH and HV intensity in the northeastern United States. In the retrieval algorithm, a semi-empirical model is calibrated and inverted for each HH and HV image to estimate biomass at the pixel level. Where possible, biomass estimates for single images in a multi-temporal stack were combined in a weighted manner. A comparison with the National Biomass and Carbon Dataset, NBCD 2000 (Kellndorfer et al., in preparation), at different spatial scales indicated the feasibility of the automated biomass retrieval approach and confirmed previous findings that the retrieval accuracy for HV intensity is consistently better than that for HH intensity and depends on the imaging conditions. The weighted combination of the biomass estimates from each intensity image in a multi-temporal stack significantly improved the retrieval performance. Because of regional differences in the multi-temporal coverage with ALOS PALSAR dual polarization data (1–5 images for 2007/08) and the pronounced dependence of the retrieval for single images on the imaging conditions, the possibility of producing maps with consistent accuracy at high resolution was found to be limited. Accurate biomass estimates were obtained when aggregating the ALOS biomass maps at county scale and comparing the estimates to Forest Inventory and Analysis (FIA) county statistics (RMSE = 12.9 t/ha, R 2  = 0.86).

[1]  M. Nilsson,et al.  Combining national forest inventory field plots and remote sensing data for forest databases , 2008 .

[2]  E. Nezry,et al.  Structure detection and statistical adaptive speckle filtering in SAR images , 1993 .

[3]  Dirk H. Hoekman,et al.  Land cover type and biomass classification using AirSAR data for evaluation of monitoring scenarios in the Colombian Amazon , 2000, IEEE Trans. Geosci. Remote. Sens..

[4]  Masanobu Shimada,et al.  PALSAR Radiometric and Geometric Calibration , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[5]  R. Nelson,et al.  Estimating Siberian timber volume using MODIS and ICESat/GLAS. , 2009 .

[6]  Kyle McDonald,et al.  Evaluating the type and state of Alaska taiga forests with imaging radar for use in ecosystem models , 1994, IEEE Trans. Geosci. Remote. Sens..

[7]  Kamal Sarabandi,et al.  Estimation of forest biophysical characteristics in Northern Michigan with SIR-C/X-SAR , 1995, IEEE Trans. Geosci. Remote. Sens..

[8]  P. Gudmandsen,et al.  Calibration and modelling of MAESTRO 1 polarimetric SAR data of a forest area in Les Landes, France , 1994 .

[9]  Eric Rignot,et al.  Assessment of JERS-1 SAR for monitoring secondary vegetation in Amazonia: I. Spatial and temporal variability in backscatter across a chrono-sequence of secondary vegetation stands in Rondonia , 2002 .

[10]  R. Houghton,et al.  Aboveground Forest Biomass and the Global Carbon Balance , 2005 .

[11]  Alex C. Lee,et al.  Empirical relationships between AIRSAR backscatter and LiDAR-derived forest biomass, Queensland, Australia , 2006 .

[12]  Marc L. Imhoff,et al.  Radar backscatter and biomass saturation: ramifications for global biomass inventory , 1995 .

[13]  Erich Meier,et al.  Rigorous Derivation of Backscattering Coefficient. , 1994 .

[14]  Yrjö Rauste,et al.  Multi-temporal JERS SAR data in boreal forest biomass mapping , 2005 .

[15]  C. Tucker,et al.  A large carbon sink in the woody biomass of Northern forests , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Adrian K. Fung,et al.  A microwave scattering model for layered vegetation , 1992, IEEE Trans. Geosci. Remote. Sens..

[17]  Juha Hyyppä,et al.  Backscattering properties of boreal forests at the C- and X-bands , 1994, IEEE Trans. Geosci. Remote. Sens..

[18]  Mahta Moghaddam,et al.  Estimation of crown and stem water content and biomass of boreal forest using polarimetric SAR imagery , 2000, IEEE Trans. Geosci. Remote. Sens..

[19]  Guoqing Sun,et al.  Mapping biomass of a northern forest using multifrequency SAR data , 1994, IEEE Trans. Geosci. Remote. Sens..

[20]  Guoqing Sun,et al.  Effects of environmental conditions on boreal forest classification and biomass estimates with SAR , 2000, IEEE Trans. Geosci. Remote. Sens..

[21]  Eric S. Kasischke,et al.  Evaluation of approaches to estimating aboveground biomass in Southern pine forests using SIR-C data☆ , 1997 .

[22]  Heiko Balzter,et al.  Retrieval of timber volume and snow water equivalent over a Finnish boreal forest from airborne polarimetric Synthetic Aperture Radar , 2002 .

[23]  David M. Le Vine,et al.  A microwave polarimetric scattering model for forest canopies based on vector radiative transfer theory , 1995 .

[24]  C. Schmullius,et al.  Assessment of stand‐wise stem volume retrieval in boreal forest from JERS‐1 L‐band SAR backscatter , 2006 .

[25]  M. Craig Dobson,et al.  Toward precision forestry: plot-level parameter retrieval for slash pine plantations with JPL AIRSAR , 2003, IEEE Trans. Geosci. Remote. Sens..

[26]  Martti Hallikainen,et al.  Retrieval of biomass in boreal forests from multitemporal ERS-1 and JERS-1 SAR images , 1999, IEEE Trans. Geosci. Remote. Sens..

[27]  Urs Wegmüller,et al.  Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements , 2011 .

[28]  J. V. Soares,et al.  Distribution of aboveground live biomass in the Amazon basin , 2007 .

[29]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[30]  R. Birdsey,et al.  National-Scale Biomass Estimators for United States Tree Species , 2003, Forest Science.

[31]  J. Wickham,et al.  Completion of the 2001 National Land Cover Database for the conterminous United States , 2007 .

[32]  M. Nilsson,et al.  Countrywide Estimates of Forest Variables Using Satellite Data and Field Data from the National Forest Inventory , 2003, Ambio.

[33]  W. Walker,et al.  An empirical InSAR-optical fusion approach to mapping vegetation canopy height , 2007 .

[34]  Christian Thiel,et al.  Operational Large-Area Forest Monitoring in Siberia Using ALOS PALSAR Summer Intensities and Winter Coherence , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Maurizio Santoro,et al.  Signatures of ALOS PALSAR L-Band Backscatter in Swedish Forest , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Thomas J. Jackson,et al.  L-Band Radar Estimation of Forest Attenuation for Active/Passive Soil Moisture Inversion , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Michael J. Oimoen,et al.  The National Elevation Dataset , 2002 .

[38]  Holly K. Gibbs,et al.  New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000 , 2008 .

[39]  John D. Vona,et al.  Vegetation height estimation from Shuttle Radar Topography Mission and National Elevation Datasets , 2004 .

[40]  Guoqing Sun,et al.  Boreal forest ecosystem characterization with SIR-C/XSAR , 1995, IEEE Trans. Geosci. Remote. Sens..

[41]  R. Nelson,et al.  Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .

[42]  Lars M. H. Ulander,et al.  L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest , 2011 .

[43]  Adrian Luckman,et al.  Microwave observations of boreal forests in the NOPEX area of Sweden and a comparison with observations of a temperate plantation in the United Kingdom , 1999 .

[44]  M. Lefsky A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System , 2010 .

[45]  Fawwaz T. Ulaby,et al.  Measuring the propagation properties of a forest canopy using a polarimetric scatterometer , 1990 .

[46]  Adrian Luckman,et al.  A study of the relationship between radar backscatter and regenerating tropical forest biomass for spaceborne SAR instruments , 1997 .

[47]  J. Fransson Estimation of stem volume in boreal forests using ERS-1 C- and JERS-1 L-band SAR data , 1999 .

[48]  Martti Hallikainen,et al.  Multitemporal behavior of L- and C-band SAR observations of boreal forests , 1999, IEEE Trans. Geosci. Remote. Sens..

[49]  Maurizio Santoro,et al.  Stem volume retrieval in boreal forests from ERS-1/2 interferometry , 2002 .

[50]  K. Jon Ranson,et al.  Radar modeling of a boreal forest , 1991, IEEE Trans. Geosci. Remote. Sens..

[51]  M. D. Nelson,et al.  Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information , 2008 .

[52]  John H. Seinfeld,et al.  Constraining the contribution of organic acids and AMS m/z 44 to the organic aerosol budget: On the importance of meteorology, aerosol hygroscopicity, and region , 2010 .

[53]  JoBea Way,et al.  Mapping of forest types in Alaskan boreal forests using SAR imagery , 1994, IEEE Trans. Geosci. Remote. Sens..

[54]  Dan R. Sheen,et al.  Foliage transmission measurements using a ground-based ultrawide band (300-1300 MHz) SAR system , 1994, IEEE Trans. Geosci. Remote. Sens..

[55]  Eric S. Kasischke,et al.  Sensitivity of ERS-1 and JERS-1 radar data to biomass and stand structure in Alaskan boreal forest , 1995 .

[56]  Irena Hajnsek,et al.  Tropical-Forest-Parameter Estimation by Means of Pol-InSAR: The INDREX-II Campaign , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[57]  S. Saatchi,et al.  Impact of spatial variability of tropical forest structure on radar estimation of aboveground biomass , 2011 .

[58]  Lars M. H. Ulander,et al.  C-band repeat-pass interferometric SAR observations of the forest , 1997, IEEE Trans. Geosci. Remote. Sens..

[59]  F. Ulaby,et al.  Multitemporal land-cover classification using SIR-C/X-SAR imagery , 1998 .

[60]  F. Ulaby,et al.  Vegetation modeled as a water cloud , 1978 .

[61]  Anthony Freeman,et al.  Polarization signatures of frozen and thawed forests of varying environmental state , 1994, IEEE Trans. Geosci. Remote. Sens..

[62]  Laurent Ferro-Famil,et al.  Estimation of Forest Structure, Ground, and Canopy Layer Characteristics From Multibaseline Polarimetric Interferometric SAR Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[63]  I. Woodhouse,et al.  Using satellite radar backscatter to predict above‐ground woody biomass: A consistent relationship across four different African landscapes , 2009 .

[64]  Thuy Le Toan,et al.  Relating Radar Remote Sensing of Biomass to Modelling of Forest Carbon Budgets , 2004 .

[65]  J. Hyyppä,et al.  Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes , 2000 .

[66]  J. Townshend,et al.  Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm , 2003 .

[67]  E. Turiel The Development of Morality , 2007 .

[68]  T. Le Toan,et al.  Sensitivity of space-borne SAR data to forest parameters over sloping terrain. Theory and experiment , 2001 .

[69]  S. Goetz,et al.  Reply to Comment on ‘A first map of tropical Africa’s above-ground biomass derived from satellite imagery’ , 2008, Environmental Research Letters.

[70]  S. Goetz,et al.  Mapping and monitoring carbon stocks with satellite observations: a comparison of methods , 2009, Carbon balance and management.

[71]  J. Kellndorfer,et al.  Modeling Height, Biomass, and Carbon in U.S. Forests from FIA, SRTM, and Ancillary National Scale Data Sets , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[72]  Yong Wang,et al.  Inclusion of a Simple Multiple Scattering Model into a Microwave Canopy Backscatter Model , 1998 .

[73]  Thuy Le Toan,et al.  Dependence of radar backscatter on coniferous forest biomass , 1992, IEEE Trans. Geosci. Remote. Sens..

[74]  Christiane Schmullius,et al.  Large-scale mapping of boreal forest in Siberia , 2003 .

[75]  Christiane Schmullius,et al.  Large area forest stem volume mapping in the boreal zone using synergy of ERS-1/2 tandem coherence and MODIS vegetation continuous fields , 2011 .

[76]  William A. Bechtold,et al.  The enhanced forest inventory and analysis program - national sampling design and estimation procedures , 2005 .

[77]  Thuy Le Toan,et al.  Radiative transfer modeling of cross-polarized backscatter from a pine forest using the discrete ordinate and eigenvalue method , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[78]  Maurizio Santoro,et al.  Multitemporal repeat pass SAR interferometry of boreal forests , 2005, IEEE Trans. Geosci. Remote. Sens..

[79]  Manabu Watanabe,et al.  ALOS PALSAR: A Pathfinder Mission for Global-Scale Monitoring of the Environment , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[80]  Masanobu Shimada,et al.  An Evaluation of the ALOS PALSAR L-Band Backscatter—Above Ground Biomass Relationship Queensland, Australia: Impacts of Surface Moisture Condition and Vegetation Structure , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[81]  JoBea Way,et al.  Radar estimates of aboveground biomass in boreal forests of interior Alaska , 1994, IEEE Trans. Geosci. Remote. Sens..

[82]  Malik Chami,et al.  Impact of sea‐surface dust radiative forcing on the oceanic primary production: A 1D modeling approach applied to the West African coastal waters , 2009 .

[83]  Thuy Le Toan,et al.  Relating forest biomass to SAR data , 1992, IEEE Trans. Geosci. Remote. Sens..

[84]  Mihai A. Tanase,et al.  Soil Moisture Limitations on Monitoring Boreal Forest Regrowth Using Spaceborne L-Band SAR Data , 2011 .

[85]  H. Shinohara,et al.  Relation Between L-band Microwave Penetration / Backscattering Characteristics And State Of Trees , 1992, [Proceedings] IGARSS '92 International Geoscience and Remote Sensing Symposium.