Methods to Create Novel La2−xSrxCuO4 Devices with Multiple Atomically Sharp Interfaces

We present methods to create devices that utilize the high-temperature superconductor La2-xSrxCuO4 grown by atomic layer-by-layer molecular beam epitaxy (ALL-MBE). The ALL-MBE synthesis technique provides atomically precise interfaces necessary for the tunnel junctions, Josephson junctions, and dyon detection devices that will be considered. A series of microfabrication processing steps using established techniques are given for each device, and their details are discussed. These procedures are easily extended to generate more complex designs and could be suitable for a wider variety of materials.

[1]  The possibility of realizing room-temperature superconductivity in high-Tccuprates in their two-dimensional sandwich layers , 2022, Functional Materials.

[2]  A. Bollinger,et al.  Method to create cuprate tunnel junctions with atomically sharp interfaces , 2022, Journal of Vacuum Science & Technology B.

[3]  W. B. Doriese,et al.  Generic character of charge and spin density waves in superconducting cuprates , 2021, Proceedings of the National Academy of Sciences of the United States of America.

[4]  V. Vinokur,et al.  Topological Model of the Pseudogap State: Experimental Signatures , 2022, Frontiers in Physics.

[5]  Tadesse A. Assefa,et al.  Charge density waves in cuprate superconductors beyond the critical doping , 2021 .

[6]  T. Kondo,et al.  Incoherent transport across the strange-metal regime of overdoped cuprates , 2020, Nature.

[7]  T. Kondo,et al.  Reduced Hall carrier density in the overdoped strange metal regime of cuprate superconductors , 2019, Nature Physics.

[8]  C. Varma Colloquium : Linear in temperature resistivity and associated mysteries including high temperature superconductivity , 2020 .

[9]  D. Natelson,et al.  Tunneling spectroscopy of c -axis epitaxial cuprate junctions , 2020, 2001.03245.

[10]  D. Natelson,et al.  Electron pairing in the pseudogap state revealed by shot noise in copper oxide junctions , 2019, Nature.

[11]  N. Brookes,et al.  Formation of Incommensurate Charge Density Waves in Cuprates , 2019, Physical Review X.

[12]  R. Greene,et al.  The Strange Metal State of the Electron-Doped Cuprates , 2019, 1905.04998.

[13]  I. Zeljkovic,et al.  Charge-stripe crystal phase in an insulating cuprate , 2018, Nature Materials.

[14]  M. Dion,et al.  Universal T-linear resistivity and Planckian dissipation in overdoped cuprates , 2018, Nature Physics.

[15]  J. Betts,et al.  Scale-invariant magnetoresistance in a cuprate superconductor , 2017, Science.

[16]  G. Gu,et al.  Incommensurate phonon anomaly and the nature of charge density waves in cuprates , 2017, 1712.04554.

[17]  A. Bollinger,et al.  Spontaneous breaking of rotational symmetry in copper oxide superconductors , 2017, Nature.

[18]  B. Keimer,et al.  Thermodynamic evidence for a nematic phase transition at the onset of the pseudogap in YBa2Cu3Oy , 2017, Nature Physics.

[19]  N. Brookes,et al.  High-temperature charge density wave correlations in La1.875Ba0.125CuO4 without spin–charge locking , 2016, Proceedings of the National Academy of Sciences.

[20]  R. Liang,et al.  Anomalous thermal diffusivity in underdoped YBa2Cu3O6+x , 2016, Proceedings of the National Academy of Sciences.

[21]  R. Liang,et al.  A global inversion-symmetry-broken phase inside the pseudogap region of YBa2Cu3Oy , 2016, Nature Physics.

[22]  Yangmu Li,et al.  Hidden Fermi-liquid Charge Transport in the Antiferromagnetic Phase of the Electron-Doped Cuprate Superconductors. , 2016, Physical review letters.

[23]  A. Bollinger,et al.  Two-dimensional superconductivity in the cuprates revealed by atomic-layer-by-layer molecular beam epitaxy , 2016 .

[24]  B. Vignolle,et al.  Fermi liquid behavior of the in-plane resistivity in the pseudogap state of YBa2Cu4O8 , 2015, Proceedings of the National Academy of Sciences.

[25]  L. Taillefer,et al.  Two types of nematicity in the phase diagram of the cuprate superconductor YBa 2 Cu 3 O y , 2015, 1504.06972.

[26]  H. Eisaki,et al.  Simultaneous Transitions in Cuprate Momentum-Space Topology and Electronic Symmetry Breaking , 2014, Science.

[27]  N. P. Armitage,et al.  Optical birefringence and dichroism of cuprate superconductors in the THz regime. , 2013, Physical review letters.

[28]  A. Bollinger,et al.  Anomalous independence of interface superconductivity from carrier density. , 2013, Nature materials.

[29]  A. Georges,et al.  Spectroscopic evidence for Fermi liquid-like energy and temperature dependence of the relaxation rate in the pseudogap phase of the cuprates , 2013, Proceedings of the National Academy of Sciences.

[30]  A. P. Mackenzie,et al.  Similarity of Scattering Rates in Metals Showing T-Linear Resistivity , 2013, Science.

[31]  N. Gedik,et al.  Fluctuating charge-density waves in a cuprate superconductor. , 2013, Nature materials.

[32]  M. Dressel,et al.  Universal sheet resistance and revised phase diagram of the cuprate high-temperature superconductors , 2012, Proceedings of the National Academy of Sciences.

[33]  G. M. De Luca,et al.  Long-Range Incommensurate Charge Fluctuations in (Y,Nd)Ba2Cu3O6+x , 2012, Science.

[34]  E. M. Forgan,et al.  Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67 , 2012, Nature Physics.

[35]  R. Liang,et al.  Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy , 2011, Nature.

[36]  G. Gu,et al.  Fluctuating stripes at the onset of the pseudogap in the high-Tc superconductor Bi2Sr2CaCu2O8+x , 2010, Nature.

[37]  J. Sethna,et al.  Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states , 2010, Nature.

[38]  Michael J. Lawler,et al.  Nematic Fermi Fluids in Condensed Matter Physics , 2009, 0910.4166.

[39]  L. Taillefer,et al.  Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor , 2009, Nature.

[40]  C. Ambrosch-Draxl,et al.  High-Temperature Superconductivity in a Single Copper-Oxygen Plane , 2009, Science.

[41]  I. Božović,et al.  Madelung Strain in Cuprate Superconductors – A Route to Enhancement of the Critical Temperature , 2009 .

[42]  S. Hayden,et al.  Anomalous Criticality in the Electrical Resistivity of La2–xSrxCuO4 , 2009, Science.

[43]  J. C. Lee,et al.  Superconducting transition at 38 K in insulating-overdoped La2CuO4-La1.64Sr0.36CuO4 superlattices: evidence for interface electronic redistribution from resonant soft X-ray scattering. , 2008, Physical review letters.

[44]  D. Muller,et al.  High-temperature interface superconductivity between metallic and insulating copper oxides , 2008, Nature.

[45]  T. Kondo,et al.  Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy , 2008, 0806.0203.

[46]  B. Keimer,et al.  Electronic Liquid Crystal State in the High-Temperature Superconductor YBa2Cu3O6.45 , 2008, Science.

[47]  J. Zuo,et al.  Metal-insulator transition and its relation to magnetic structure in (LaMnO3)2n/(SrMnO3)n superlattices. , 2007, Physical review letters.

[48]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[49]  Masashi Kawasaki,et al.  Quantum Hall Effect in Polar Oxide Heterostructures , 2007, Science.

[50]  W. G. van der Wiel,et al.  Magnetic effects at the interface between non-magnetic oxides. , 2007, Nature materials.

[51]  L. Balicas,et al.  Anisotropic scattering and anomalous normal-state transport in a high-temperature superconductor , 2006, cond-mat/0609763.

[52]  G. Sawatzky,et al.  Spatially modulated 'Mottness' in La2-xBaxCuO4 , 2005, cond-mat/0511019.

[53]  M. Beasley,et al.  Giant proximity effect in cuprate superconductors. , 2004, Physical review letters.

[54]  L. Regnault,et al.  Stripe order, depinning, and fluctuations in La$_{1.875}$Ba$_{0.125}$CuO$_{4}$ and La$_{1.875}$Ba$_{0.075}$Sr$_{0.050}$CuO$_{4}$ , 2004, cond-mat/0403396.

[55]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[56]  E. Fradkin,et al.  How to detect fluctuating stripes in the high-temperature superconductors , 2003 .

[57]  T. Geballe,et al.  No mixing of superconductivity and antiferromagnetism in a high-temperature superconductor , 2003, Nature.

[58]  Berkeley,et al.  A Four Unit Cell Periodic Pattern of Quasi-Particle States Surrounding Vortex Cores in Bi2Sr2CaCu2O8+δ , 2002, Science.

[59]  G. Aeppli,et al.  Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor , 2002, Nature.

[60]  S. Kivelson Making high Tc higher: a theoretical proposal , 2001, cond-mat/0109151.

[61]  Y. Ando,et al.  Electrical resistivity anisotropy from self-organized one dimensionality in high-temperature superconductors. , 2001, Physical review letters.

[62]  A. Sharoni,et al.  Correlation of tunneling spectra with surface nanomorphology and doping in thin YBa2Cu3O7 − δ films , 2001, cond-mat/0103581.

[63]  I. Božović Atomic-layer engineering of superconducting oxides: yesterday, today, tomorrow , 2001 .

[64]  K. Gray,et al.  Quasiparticle and Josephson tunneling of overdoped Bi 2 Sr 2 CaCu 2 O 8¿d single crystals , 2000 .

[65]  M. Kastner,et al.  Incommensurate geometry of the elastic magnetic peaks in superconducting La 1.88 Sr 0.12 CuO 4 , 1999, cond-mat/9912401.

[66]  Masayoshi Ohashi,et al.  OBSERVATION OF MODULATED MAGNETIC LONG-RANGE ORDER IN LA1.88SR0.12CUO4 , 1998 .

[67]  S. Uchida,et al.  Evidence for stripe correlations of spins and holes in copper oxide superconductors , 1995, Nature.

[68]  G. Virshup,et al.  Atomic-layer engineering of cuprate superconductors , 1994 .

[69]  M. Cantoni,et al.  Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system , 1993, Nature.

[70]  Chu,et al.  Superconductivity in the high-Tc Bi-Ca-Sr-Cu-O system: Phase identification. , 1988, Physical review letters.

[71]  A. Hermann,et al.  Bulk superconductivity at 120 K in the Tl–Ca/Ba–Cu–O system , 1988, Nature.

[72]  Fischer,et al.  Antiferromagnetism and oxygen deficiency in single-crystal La2CuO4- delta. , 1987, Physical review. B, Condensed matter.

[73]  Mitsuda,et al.  Confirmation of antiferromagnetism in La2CuO , 1987, Physical review. B, Condensed matter.

[74]  King,et al.  Antiferromagnetism in La2CuO , 1987, Physical review letters.

[75]  Chu,et al.  Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure. , 1987, Physical review letters.

[76]  E. Rietman,et al.  Bulk superconductivity at 36 K in La1.8Sr0.2CuO4. , 1987, Physical review letters.

[77]  K. Müller,et al.  Possible highTc superconductivity in the Ba−La−Cu−O system , 1986 .

[78]  V. Ginzburg On surface superconductivity , 1964 .