Aquifer-yield continuum as a guide and typology for science-based groundwater management

Groundwater availability is at the core of hydrogeology as a discipline and, simultaneously, the concept is the source of ambiguity for management and policy. Aquifer yield has undergone multiple definitions resulting in a range of scientific methods to calculate and model availability reflecting the complexity of combined scientific, management, policy, and stakeholder processes. The concept of an aquifer-yield continuum provides an approach to classify groundwater yields along a spectrum, from non-use through permissive sustained, sustainable, maximum sustained, safe, permissive mining to maximum mining yields, that builds on existing literature. Additionally, the aquifer-yield continuum provides a systems view of groundwater availability to integrate physical and social aspects in assessing management options across aquifer settings. Operational yield describes the candidate solutions for operational or technical implementation of policy, often relating to a consensus yield that incorporates human dimensions through participatory or adaptive governance processes. The concepts of operational and consensus yield address both the social and the technical nature of science-based groundwater management and governance.RésuméLa disponibilité de l’eau souterraine est au centre de l’hydrogéologie en tant que discipline, et simultanément le concept est source d’ambiguïté pour les processus de gestion et de police de l’eau. Le terme débit d’un aquifère a connu de multiples définitions résultant de la gamme des méthodes scientifiques de calcul et modèles disponibles, reflétant la difficulté de concilier science, processus de gestion, police de l’eau et dépositaires d’enjeux. Le concept d’un continuum aquifère-débit fournit une approche pour classer les prélèvements d’eau souterraine dans un spectre s’étendant de la non utilisation au débit exploitable assuré, débit exploitable, débit maximum exploitable, débit de sécurité, débit d’exploitation toléré des réserves, jusqu’à l’exploitation des réserves ultimes, spectre à la base de la littérature existante. De plus, le continuum aquifère-débit fournit une vision systémique de la disponibilité de l’eau souterraine pour intégrer des aspects physiques et sociaux dans l’évaluation des options de gestion exploitation selon les catégories d’aquifères. Le débit opérationnel décrit les solutions candidates pour une mise en place opérationnelle ou technique d’une politique de l’eau, souvent en relation avec une production consensuelle incluant des dimensions humaines à travers des processus de gouvernance participative ou adaptative. Les concepts de débit opérationnel et consensuel concernent à la fois la nature sociale et technique de la gestion et la gouvernance scientifique de l’aquifère.ResumenLa disponibilidad del agua subterránea es el centro de la hidrogeología como disciplina y, simultáneamente, el concepto es una fuente de ambigüedad para su gestión y la política. El rendimiento de un acuífero ha sido objeto de múltiples definiciones que derivan en un abanico de métodos científicos para calcular y modelar la disponibilidad reflejando la complejidad de los procesos combinados, científicos, de la gestión, de la política y de las partes interesadas. El concepto de continuidad del rendimiento de un acuífero proporciona una aproximación para clasificar los rendimientos del agua subterránea a lo largo de un espectro, desde el no uso, a través de rendimientos, permisivos sostenidos, sostenibles, máximos sostenidos, seguro, permisivos mineros a máximo minero, que se basan en la literatura existente. Adicionalmente, el rendimiento continuo del acuífero proporciona una visión de los sistemas de la disponibilidad de agua subterránea para integrar aspectos físicos y sociales al evaluar las opciones de gestión a través de la configuración de los acuíferos. El rendimiento operacional describe las soluciones candidatas para la implementación operacional o técnicas de la política, a menudo relacionadas a un rendimiento de consensuado que incorpora dimensiones humanas través de procesos adaptativos y participativos de gobernanza. Los conceptos de rendimiento operacional y de consenso satisfacen la naturaleza social y técnica de la gestión y la gobernanza del agua subterránea basada en la ciencia.摘要地下水可用性是水文地质学科的核心,同时也是管理与政策模糊不清的根源。出水量经历了很多定义,导致一系列计算和模拟可用性的科学方法,表明了联合科学、管理、政策以及涉众过程的复杂性。含水层产量连续的概念为出水量分类提供了一种方法,根据不同范围,基于已有文献,分为不能使用,大致可持续出水量,可持续出水量,最大程度可持续出水量,安全出水量,可出水量到最大程度出水量。另外,含水层产量连续提供了地下水可用性的一个系统视图,可整合含水层设置的管理选项评价中物理和社会方面。运营出水量描述了可操作的或者技术上可行的政策候选方案,通常与包含有可参与的或者可适当控制处理的人文因素的共识出水量相关。运营出水量和共识出水量的概念均记有以科学为基础的地下水管理和调控的社会和技术性质。ResumoA disponibilidade da água subterrânea é nuclear na hidrogeologia como disciplina e, simultaneamente, o conceito é origem de ambiguidade para a gestão e para as políticas da água. A produtividade dos aquíferos teve múltiplas definições, de que resultaram diversos métodos científicos para o cálculo e modelação da disponibilidade, refletindo a complexidade da combinação dos processos científicos, gestionários, políticos e os parceiros envolvidos. O conceito de continuum aquífero-produtividade fornece uma abordagem para classificar as produções de água subterrânea ao longo de todo um espetro, tal como se encontra na literatura, desde o não-uso, passando pelo uso permitido permanente, a produção sustentável, a produção máxima sustentável, a produção segura, o esgotamento permitido e o esgotamento máximo. Adicionalmente, o conceito de continuum aquífero-produção proporciona uma visão em sistema da disponibilidade da água subterrânea para a integração de aspetos físicos e sociais na avaliação de opções de gestão através de cenários no aquífero. A produção operacional descreve as soluções candidatas para implementação técnica e operacional de políticas, frequentemente relacionada com uma produção consensual que incorpora as dimensões humanas através de processos de governância participativa ou adaptativa. Os conceitos de produção operacional e consensual respondem ambos à natureza social e à natureza técnica da gestão e da governância cientificamente fundamentada da água subterrânea.

[1]  Joseph H. A. Guillaume,et al.  A structured analysis of uncertainty surrounding modeled impacts of groundwater-extraction rules , 2012, Hydrogeology Journal.

[2]  Emilio Custodio,et al.  Aquifer overexploitation: what does it mean? , 2002 .

[3]  Robert A. Young,et al.  The temporal allocation of ground water—A simulation approach , 1970 .

[4]  Dennis R. Helsel,et al.  Assessing ground-water vulnerability to contamination: Providing scientifically defensible information for decision makers , 2002 .

[5]  The water budget myth revisited: why hydrogeologists model. , 2002, Ground water.

[6]  P. Domenico Concepts and Models in Groundwater Hydrology , 1972 .

[7]  R. Gregory,et al.  Decision Aiding, Not Dispute Resolution: Creating Insights through Structured Environmental Decisions , 2001 .

[8]  C. Pahl-Wostl,et al.  The Implications of Complexity for Integrated Resources Management , 2004 .

[9]  D. Hamby A review of techniques for parameter sensitivity analysis of environmental models , 1994, Environmental monitoring and assessment.

[10]  H. Raiffa,et al.  Games and Decisions: Introduction and Critical Survey. , 1958 .

[11]  William M. Alley,et al.  Sustainability of ground-water resources , 1999 .

[12]  Andrew Ross,et al.  The challenge of groundwater governance: case studies from Spain and Australia , 2010 .

[13]  P. Stern,et al.  Public Participation in Environmental Assessment and Decision Making , 2008 .

[14]  Alan L. Olmstead,et al.  Historical Statistics of the United States , 2006 .

[15]  E. Poeter,et al.  Documentation of UCODE; a computer code for universal inverse modeling , 1998 .

[16]  Theis Charles Vernon,et al.  The source of water derived from wells; essential factors, controlling the response of an aquifer to development , 1940 .

[17]  L. Shawn Matott,et al.  Evaluating uncertainty in integrated environmental models: A review of concepts and tools , 2009 .

[18]  Harold Conkling,et al.  Utilization of Ground-Water Storage in Stream System Development , 1945 .

[19]  Jens Christian Refsgaard,et al.  Groundwater Modeling in Integrated Water Resources Management—Visions for 2020 , 2010, Ground water.

[20]  Anthony J. Jakeman,et al.  Integrated assessment and modelling: features, principles and examples for catchment management , 2003, Environ. Model. Softw..

[21]  R. Quentin Grafton,et al.  Basin Futures: Water reform in the Murray-Darling Basin , 2011 .

[22]  Chunmiao Zheng,et al.  Sustainability of Groundwater Resources in the North China Plain , 2011 .

[23]  B. Babbitt,et al.  METHODS AND GUIDELINES FOR EFFECTIVE MODEL CALIBRATION , 2001 .

[24]  John F. Devlin,et al.  The persistence of the water budget myth and its relationship to sustainability , 2006 .

[25]  Baruch Fischhoff,et al.  Acceptable Input: Using Decision Analysis to Guide Public Policy Deliberations , 2005, Decis. Anal..

[26]  Patrick Tucci,et al.  Evolving issues and practices in managing ground-water resources : case studies on the role of science , 2003 .

[27]  S. Gorelick A review of distributed parameter groundwater management modeling methods , 1983 .

[28]  C. Zheng,et al.  An integrated global and local optimization approach for remediation system design , 1999 .

[29]  E. Ostrom Understanding Institutional Diversity , 2005 .

[30]  S. Mandel,et al.  Groundwater Resources: Investigation and Development , 1981 .

[31]  Stanley A Leake,et al.  The Journey from Safe Yield to Sustainability , 2004, Ground water.

[32]  Marios Sophocleous,et al.  From safe yield to sustainable development of water resources—the Kansas experience , 2000 .

[33]  Charles H. Lee The Determination of Safe Yield of Underground Reservoirs of the Closed-Basin Type , 2010 .

[34]  J. Bredehoeft The conceptualization model problem—surprise , 2005 .

[35]  G. Brady Governing the Commons: The Evolution of Institutions for Collective Action , 1993 .

[36]  O. E. Meinzer Outline of ground-water hydrology, with definitions , 1923 .

[37]  François Bousquet,et al.  Modelling with stakeholders , 2010, Environ. Model. Softw..

[38]  Marios Sophocleous MANAGING WATER RESOURCES SYSTEMS: WHY “SAFE YIELD” IS NOT SUSTAINABLE , 1997 .

[39]  Andrea Emilio Rizzoli,et al.  Modelling with knowledge: A review of emerging semantic approaches to environmental modelling , 2009, Environ. Model. Softw..

[40]  R. G. Kazmann "Safe Yield" in Ground-Water Development, Reality or Illusion? , 1956 .

[41]  Diana M. Allen,et al.  Groundwater sustainability strategies , 2010 .

[42]  F. Kalf,et al.  Applicability and methodology of determining sustainable yield in groundwater systems , 2005 .

[43]  Raphael G. Kazmann From Water Mining to Water Managementa , 1968 .

[44]  John Bromley,et al.  The adaptive water resource management handbook , 2010 .

[45]  Chunmiao Zheng,et al.  A Field Demonstration of the Simulation Optimization Approach for Remediation System Design , 2002, Ground water.

[46]  Marios Sophocleous,et al.  The Science and Practice of Environmental Flows and the Role of Hydrogeologists , 2007, Ground water.

[47]  T. Koontz,et al.  Research Note A Typology of Collaborative Watershed Groups: Citizen-Based, Agency-Based, and Mixed Partnerships , 2003 .

[48]  R. Margerum,et al.  A Typology of Collaboration Efforts in Environmental Management , 2008, Environmental management.

[49]  Ray Evans,et al.  Connecting Science and Engagement: Setting groundwater extraction limits using a stakeholder-led decision-making process , 2011 .

[50]  William C. Walton,et al.  Groundwater Resource Evaluation , 1976 .

[51]  E. Vivoni,et al.  Ecohydrology of water‐limited environments: A scientific vision , 2006 .

[52]  Panos G Georgopoulos,et al.  From a Theoretical Framework of Human Exposure and Dose Assessment to Computational System Implementation: The Modeling ENvironment for TOtal Risk Studies (MENTOR) , 2006, Journal of toxicology and environmental health. Part B, Critical reviews.

[53]  Suzanne A. Pierce,et al.  Groundwater decision support: Linking causal narratives, numerical models, and combinatorial search techniques to determine available yield for an aquifer system , 2006 .

[54]  Hugo A. Loáiciga,et al.  Comment on “The persistence of the water budget myth and its relationship to sustainability” by J.F. Devlin and M. Sophocleous, Hydrogeology Journal (2005) 13:549–554 , 2006 .

[55]  John Doherty,et al.  An advanced regularization methodology for use in watershed model calibration , 2006 .

[56]  W. C. Walton Future Water-level Declines in Deep Sandstone Wells in Chicago Region , 1964 .

[57]  O. E. Meinzer,et al.  Quantitative method of estimating ground-water supplies , 1920 .

[58]  Ângela Guimarães Pereira,et al.  GOUVERNe: new trends in decision support for groundwater governance issues , 2005, Environ. Model. Softw..

[59]  E. Ostrom,et al.  The Struggle to Govern the Commons , 2003, Science.

[60]  Yangxiao Zhou,et al.  A critical review of groundwater budget myth, safe yield and sustainability , 2009 .

[61]  John Doherty,et al.  Ground Water Model Calibration Using Pilot Points and Regularization , 2003, Ground water.

[62]  Mary C. Hill,et al.  JUPITER: Joint Universal Parameter Identification and Evaluation of Reliability ? An Application Programming Interface (API) for Model Analysis , 2014 .

[63]  Dennis Wichelns Embracing Uncertainty to Improve Water Management, with Examples from Seven River Basins , 2010 .

[64]  David P. Ahlfeld,et al.  Optimal management of flow in groundwater systems , 2000 .

[65]  P. Bobeck,et al.  Henry Darcy and the Public Fountains of the City of Dijon , 2003 .